Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
354
result(s) for
"Liu, Sicong"
Sort by:
Meta-XGBoost for Hyperspectral Image Classification Using Extended MSER-Guided Morphological Profiles
2020
To investigate the performance of extreme gradient boosting (XGBoost) in remote sensing image classification tasks, XGBoost was first introduced and comparatively investigated for the spectral-spatial classification of hyperspectral imagery using the extended maximally stable extreme-region-guided morphological profiles (EMSER_MPs) proposed in this study. To overcome the potential issues of XGBoost, meta-XGBoost was proposed as an ensemble XGBoost method with classification and regression tree (CART), dropout-introduced multiple additive regression tree (DART), elastic net regression and parallel coordinate descent-based linear regression (linear) and random forest (RaF) boosters. Moreover, to evaluate the performance of the introduced XGBoost approach with different boosters, meta-XGBoost and EMSER_MPs, well-known and widely accepted classifiers, including support vector machine (SVM), bagging, adaptive boosting (AdaBoost), multi class AdaBoost (MultiBoost), extremely randomized decision trees (ExtraTrees), RaF, classification via random forest regression (CVRFR) and ensemble of nested dichotomies with extremely randomized decision tree (END-ERDT) methods, were considered in terms of the classification accuracy and computational efficiency. The experimental results based on two benchmark hyperspectral data sets confirm the superior performance of EMSER_MPs and EMSER_MPs with mean pixel values within region (EMSER_MPsM) compared to that for morphological profiles (MPs), morphological profile with partial reconstruction (MPPR), extended MPs (EMPs), extended MPPR (EMPPR), maximally stable extreme-region-guided morphological profiles (MSER_MPs) and MSER_MPs with mean pixel values within region (MSER_MPsM) features. The proposed meta-XGBoost algorithm is capable of obtaining better results than XGBoost with the CART, DART, linear and RaF boosters, and it could be an alternative to the other considered classifiers in terms of the classification of hyperspectral images using advanced spectral-spatial features, especially from generalized classification accuracy and model training efficiency perspectives.
Journal Article
Association of smoking, alcohol, and coffee consumption with the risk of ovarian cancer and prognosis: a mendelian randomization study
by
Zhang, Ke
,
Shen, Yang
,
Liu, Sicong
in
Alcohol
,
Alcohol Drinking - adverse effects
,
Alcohol Drinking - epidemiology
2023
Objective
Currently, the association between smoking, alcohol, and coffee intake and the risk of ovarian cancer (OC) remains conflicting. In this study, we used a two-sample mendelian randomization (MR) method to evaluate the association of smoking, drinking and coffee consumption with the risk of OC and prognosis.
Methods
Five risk factors related to lifestyles (cigarettes per day, smoking initiation, smoking cessation, alcohol consumption and coffee consumption) were chosen from the Genome-Wide Association Study, and 28, 105, 10, 36 and 36 single-nucleotide polymorphisms (SNPs) were obtained as instrumental variables (IVs). Outcome variables were achieved from the Ovarian Cancer Association Consortium. Inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl).
Results
The two-sample MR analysis supported the causal association of genetically predicted smoking initiation (OR: 1.15 per SD, 95%CI: 1.02–1.29,
P
= 0.027) and coffee consumption (OR: 1.40 per 50% increase, 95%CI: 1.02–1.93,
P
= 0.040) with the risk of OC, but not cigarettes per day, smoking cessation, and alcohol consumption. Subgroup analysis based on histological subtypes revealed a positive genetical predictive association between coffee consumption and endometrioid OC (OR: 3.01, 95%CI: 1.50–6.04,
P
= 0.002). Several smoking initiation-related SNPs (rs7585579, rs7929518, rs2378662, rs10001365, rs11078713, rs7929518, and rs62098013), and coffee consumption-related SNPs (rs4410790, and rs1057868) were all associated with overall survival and cancer-specific survival in OC.
Conclusion
Our findings provide the evidence for a favorable causal association of genetically predicted smoking initiation and coffee consumption with OC risk, and coffee consumption is linked to a greater risk of endometrioid OC.
Journal Article
A novel fire index-based burned area change detection approach using Landsat-8 OLI data
2020
Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background.
Journal Article
Object-Based Change Detection of Very High Resolution Images by Fusing Pixel-Based Change Detection Results Using Weighted Dempster–Shafer Theory
2020
Change detection (CD), one of the primary applications of multi-temporal satellite images, is the process of identifying changes in the Earth’s surface occurring over a period of time using images of the same geographic area on different dates. CD is divided into pixel-based change detection (PBCD) and object-based change detection (OBCD). Although PBCD is more popular due to its simple algorithms and relatively easy quantitative analysis, applying this method in very high resolution (VHR) images often results in misdetection or noise. Because of this, researchers have focused on extending the PBCD results to the OBCD map in VHR images. In this paper, we present a proposed weighted Dempster-Shafer theory (wDST) fusion method to generate the OBCD by combining multiple PBCD results. The proposed wDST approach automatically calculates and assigns a certainty weight for each object of the PBCD result while considering the stability of the object. Moreover, the proposed wDST method can minimize the tendency of the number of changed objects to decrease or increase based on the ratio of changed pixels to the total pixels in the image when the PBCD result is extended to the OBCD result. First, we performed co-registration between the VHR multitemporal images to minimize the geometric dissimilarity. Then, we conducted the image segmentation of the co-registered pair of multitemporal VHR imagery. Three change intensity images were generated using change vector analysis (CVA), iteratively reweighted-multivariate alteration detection (IRMAD), and principal component analysis (PCA). These three intensity images were exploited to generate different binary PBCD maps, after which the maps were fused with the segmented image using the wDST to generate the OBCD map. Finally, the accuracy of the proposed CD technique was assessed by using a manually digitized map. Two VHR multitemporal datasets were used to test the proposed approach. Experimental results confirmed the superiority of the proposed method by comparing the existing PBCD methods and the OBCD method using the majority voting technique.
Journal Article
Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning
2018
To improve the accuracy of change detection in urban areas using bi-temporal high-resolution remote sensing images, a novel object-based change detection scheme combining multiple features and ensemble learning is proposed in this paper. Image segmentation is conducted to determine the objects in bi-temporal images separately. Subsequently, three kinds of object features, i.e., spectral, shape and texture, are extracted. Using the image differencing process, a difference image is generated and used as the input for nonlinear supervised classifiers, including k-nearest neighbor, support vector machine, extreme learning machine and random forest. Finally, the results of multiple classifiers are integrated using an ensemble rule called weighted voting to generate the final change detection result. Experimental results of two pairs of real high-resolution remote sensing datasets demonstrate that the proposed approach outperforms the traditional methods in terms of overall accuracy and generates change detection maps with a higher number of homogeneous regions in urban areas. Moreover, the influences of segmentation scale and the feature selection strategy on the change detection performance are also analyzed and discussed.
Journal Article
Psychomotor and visual skills underlying position specialization in 1352 elite youth baseball players
2023
Baseball is an international sport with participation from tens of thousands of people worldwide. In the United States, the Prospect Development Pipeline (PDP) is a collaborative effort between Major League Baseball and USA Baseball to establish a developmental pipeline leading to the professional draft. Players participating in the PDP undergo comprehensive evaluations that measure athletic performance, speed-of-processing, visual function, and on-field talent. The present study evaluated data from 1352 elite junior male PDP participants (aged 14 to 21) who signed informed consent, collected between 2017 and 2020, to identify latent abilities and their association with player specialization. Data were first subjected to Exploratory Factor Analysis (EFA) to reduce the 22 measured variables to a smaller set of latent abilities. The resulting factors were evaluated using multiple linear regression to predict each factor using age, height, weight, and position. EFA revealed a combination of physical and psychomotor skills accounting for 52% of the overall variance that grouped into four abilities: grip strength, functional vision, explosiveness, and rapid decision-making. Regression analyses demonstrated that these skills are associated with position assignments, controlling for age, weight, and height, and revealed that outfielders are the most explosive, infielders perform best on psychomotor measures, and catchers perform best on functional vision tests (ps < 0.001). These findings indicate skills that contribute to player specialization, providing new information about the developmental trajectory of junior elite baseball athletes that can be used for scouting and player development.
Journal Article
A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data
by
Liu, Sicong
,
Ma, Xiaolong
,
Li, Chengming
in
Accuracy
,
Construction planning
,
Data integration
2019
Recent advances in the fusion technology of remotely sensed data have led to an increased availability of extracted urban information from multiple spatial resolutions and multi-temporal acquisitions. Despite the existing extraction methods, there remains the challenging task of fully exploiting the characteristics of multisource remote sensing data, each of which has its own advantages. In this paper, a new fusion approach for accurately extracting urban built-up areas based on the use of multisource remotely sensed data, i.e., the DMSP-OLS nighttime light data, the MODIS land cover product (MCD12Q1) and Landsat 7 ETM+ images, was proposed. The proposed method mainly consists of two components: (1) the multi-level data fusion, including the initial sample selection, unified pixel resolution and feature weighted calculation at the feature level, as well as pixel attribution determination at decision level; and (2) the optimized sample selection with multi-factor constraints, which indicates that an iterative optimization with the normalized difference vegetation index (NDVI), the modified normalized difference water index (MNDWI), and the bare soil index (BSI), along with the sample training of the support vector machine (SVM) and the extraction of urban built-up areas, produces results with high credibility. Nine Chinese provincial capitals along the Silk Road Economic Belt, such as Chengdu, Chongqing, Kunming, Xining, and Nanning, were selected to test the proposed method with data from 2001 to 2010. Compared with the results obtained by the traditional threshold dichotomy and the improved neighborhood focal statistics (NFS) method, the following could be concluded. (1) The proposed approach achieved high accuracy and eliminated natural elements to a great extent while obtaining extraction results very consistent to those of the more precise improved NFS approach at a fine scale. The average overall accuracy (OA) and average Kappa values of the extracted urban built-up areas were 95% and 0.83, respectively. (2) The proposed method not only identified the characteristics of the urban built-up area from the nighttime light data and other daylight images at the feature level but also optimized the samples of the urban built-up area category at the decision level, making it possible to provide valuable information for urban planning, construction, and management with high accuracy.
Journal Article
Revealing the distribution and change of abandoned cropland in Ukraine based on dual period change detection method
2025
Since the outbreak of the Russia-Ukraine conflict in 2022, Ukraine has experienced different types of abandoned cropland, such as unused and unattended cropland, as a result of war damage, agricultural infrastructure destruction, and refugee outflows. Common methods for detecting abandoned cropland have difficulty effectively identifying and distinguishing these different types. This study proposes a Dual-period Change Detection method to reveal the spatial distribution and changes of different types of abandoned cropland in Ukraine, which can aid in agricultural assessments and international assistance in conflict-affected areas. The method mainly utilizes time-series NDVI data to fit the crop curves corresponding to cropland on a pixel-by-pixel basis, and then establishes discrimination rules for different types of abandoned cropland based on the crop curves, so as to detect unused cropland in the pre-conflict period (2015–2021) as well as unused cropland and unattended cropland in the post-conflict period (2022–2023). Finally, the detection results are validated and accuracy assessed using medium and high resolution spatiotemporal remote sensing imagery interpretation. The results show that the overall accuracy of the abandoned cropland extraction in Ukraine ranges from 83 to 96% during the study period. Before the conflict, the national average unused rate was 1.6%, with the lowest in 2021 and the highest in 2018. In 2022, the unused cropland area was approximately twice the average unused area before the conflict, and it was widely distributed, with the area of unattended cropland reaching 462,000 hectares, mainly in the eastern part of Ukraine. In 2023, compared to 2022, the unused cropland area decreased by 67.8%, while unattended cropland increased by 116.7%. Both types of abandoned cropland exhibited spatial clustering, with major clusters identified in the Crimea region, Kherson Oblast, Zaporizhzhia Oblast, and Donetsk Oblast.
Journal Article
Omnidirectional compliance on cross-linked actuator coordination enables simultaneous multi-functions of soft modular robots
2023
Earthworms have entirely soft bodies mainly composed of circular and longitudinal muscle bundles but can handle the complexity of unstructured environments with exceptional multifunctionality. Soft robots are naturally appropriate for mimicking soft animal structures thanks to their inherent compliance. Here, we explore the new possibility of using this compliance to coordinate the actuation movements of single-type soft actuators for not only high adaptability but the simultaneous multifunctionality of soft robots. A cross-linked actuator coordination mechanism is proposed and explained with a novel conceptual design of a cross-linked network, characterization of modular coordinated kinematics, and a modular control strategy for multiple functions. We model and analyze the motion patterns for these functions, including grabbing, manipulation, and locomotion. This further enables the combination of simultaneous multi-functions with this very simple actuator network structure. In this way, a soft modular robot is developed with demonstrations of a novel continuous-transportation mode, for which multiple objects could be simultaneously transported in unstructured environments with either mobile manipulation or pick-and-place operation. A comprehensive workflow is presented to elaborate the cross-linked actuator coordination concept, analytical modeling, modular control strategy, experimental validation, and multi-functional applications. Our understanding of actuator coordination inspires new soft robotic designs for wider robotic applications.
Journal Article
A Short-Term Wind Power Forecasting Model Based on 3D Convolutional Neural Network–Gated Recurrent Unit
2023
Enhancing the accuracy of short-term wind power forecasting can be effectively achieved by considering the spatial–temporal correlation among neighboring wind turbines. In this study, we propose a short-term wind power forecasting model based on 3D CNN-GRU. First, the wind power data and meteorological data of 24 surrounding turbines around the target turbine are reconstructed into a three-dimensional matrix and inputted into the 3D CNN and GRU encoders to extract their spatial–temporal features. Then, the power predictions for different forecasting horizons are outputted through the GRU decoder and fully connected layers. Finally, experimental results on the SDWPT datasets show that our proposed model significantly improves the prediction accuracy compared to BPNN, GRU, and 1D CNN-GRU models. The results show that the 3D CNN-GRU model performs optimally. For a forecasting horizon of 10 min, the average reductions in RMSE and MAE on the validation set are about 10% and 11%, respectively, with an average improvement of about 1% in R. For a forecasting horizon of 120 min, the average reductions in RMSE and MAE on the validation set are about 6% and 8%, respectively, with an average improvement of about 14% in R.
Journal Article