Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,386 result(s) for "Liu, T-H"
Sort by:
The association between sarcopenia and osteoporotic vertebral compression refractures
SummarySarcopenia was reported to be significantly associated with osteoporosis. In this study, we reported for the first time that sarcopenia was an independent risk predictor of osteoporotic vertebral compression refractures (OVCRFs). Other risk factors of OVCRFs are low bone mass density T-scores, female sex, and advanced age.IntroductionThe purpose of this study was to investigate the association between osteoporotic vertebral compression refractures (OVCRFs) and sarcopenia, and to identify other risk factors of OVCRFs.MethodsWe evaluated 237 patients with osteoporotic vertebral compression fracture who underwent percutaneous kyphoplasty (PKP) in our hospital from August 2016 to December 2017. To diagnose sarcopenia, a cross-sectional computed tomography (CT) image at the inferior aspect of the third lumbar vertebra (L3) was selected for estimating muscle mass. Grip strength was used to assess muscle strength. Possible risk factors, such as age, sex, body mass index (BMI), bone mineral density (BMD), location of the treated vertebra, anterior-posterior ratio (AP ratio) of the fractured vertebra, cement leakage, and vacuum clefts, were assessed. The multivariable analysis was used to determine the risk factors of OVCRFs.ResultsDuring the follow-up period, OVCRFs occurred in 64 (27.0%) patients. Sarcopenia was present in 48 patients (20.3%), including 21 OVCRFs and 27 non-OVCRFs patients. Sarcopenia was significantly correlated with advanced age, lower BMI, lower BMD, and hypoalbuminemia. Compared with non-sarcopenic patients, sarcopenic patients had higher OVCRFs risk. In univariate analysis, sarcopenia (p = 0.003), female (p = 0.024), advanced age (≥ 75 years; p < 0.001), lower BMD (p < 0.001), lower BMI (p = 0.01), TL junction (vertebral levels at the thoracolumbar junction) (p = 0.01), cardiopulmonary comorbidity (p = 0.042), and hypoalbuminemia (p = 0.003) were associated with OVCRFs. Multivariable analysis revealed that sarcopenia (OR 2.271; 95% CI 1.069–4.824, p = 0.033), lower BMD (OR 1.968; 95% CI 1.350–2.868, p < 0.001), advanced age (≥ 75 years; OR 2.431; 95% CI 1.246–4.744, p = 0.009), and female sex (OR 4.666; 95% CI 1.400–15.552, p = 0.012) were independent risk predictors of OVCRFs.ConclusionsSarcopenia is an independent risk predictor of osteoporotic vertebral compression refractures. Other factors affecting OVCRFs are low BMD T-scores, female sex, and advanced age.
CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells
Previously, we reported that Akt inactivation determines the sensitivity of hepatocellular carcinoma (HCC) cells to bortezomib. In this study, we report that cancerous inhibitor of protein phosphatase 2A (CIP2A), a cellular inhibitor of protein phosphatase 2A (PP2A), mediates the apoptotic effect of bortezomib in HCC. Silencing PP2A by small interference RNA (siRNA) abolishes bortezomib-induced down-regulation of phospho-Akt and apoptosis. Bortezomib increases PP2A activity in sensitive HCC cells, including Sk-Hep1, Hep3B and Huh-7, but not in resistant PLC5 cells. Bortezomib down-regulates CIP2A in a dose- and time-dependent manner in all sensitive HCC cells, whereas no alterations in CIP2A were found in resistant PLC5 cells. Knockdown of CIP2A by siRNA restored bortezomib’s effects on apoptosis and PP2A activity in PLC5 cells. Moreover, over-expression of CIP2A up-regulated phospho-Akt and protected Sk-Hep1 cells from bortezomib-induced apoptosis. It is significant that, ectopic expression of CIP2A decreased Akt-related PP2A activity, whereas silencing CIP2A increased this activity, indicating that CIP2A negatively regulates Akt-related PP2A activity in HCC cells, furthermore, our in vivo data showed that bortezomib down-regulates CIP2A and up-regulates PP2A activity in Huh-7 tumors, but not in PLC5 tumors. In conclusion, inhibition of CIP2A determines the effects of bortezomib on apoptosis and PP2A-dependent Akt inactivation in HCC.
A serological assay to detect SARS-CoV-2 seroconversion in humans
Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection. Development of an enzyme-linked immunosorbent assay to detect antibodies to the SARS-CoV-2 spike protein in human sera and plasma.
KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer
Tumor metastasis is the main reason of cancer-related death for gastric cancer (GC) patients and gene expression microarray data indicate that kinesin family member 26B (KIF26B) is one of the most upregulated genes in metastatic GC samples. Specifically, KIF26B expression was upregulated in a stepwise manner from non-tumorous gastric mucosa, primary GC tissues without metastasis, via primary GC tissues with metastasis, to secondary lymph node metastatic (LNM) foci. Increased expression of KIF26B was correlated with tumor size, positive LNM or distant metastases and poor prognosis. KIF26B, negatively regulated by miR-372, promoted GC cell proliferation and metastasis in vitro and in vivo . Mechanistic investigations confirmed that the main target of KIF26B was the vascular endothelial growth factor (VEGF) signaling pathway, particularly by inhibition or overexpression of VEGFA, PXN, FAK, PIK3CA, BCL2 and CREB1. Thus, KIF26B, a novel oncogene regulated by miR-372, promotes proliferation and metastasis through the VEGF pathway in GC.
EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin
The enhancer of zeste homolog 2 (EZH2) is upregulated and has an oncogenic role in several types of human cancer. However, the abnormalities of EZH2 and its underlying mechanisms in the pathogenesis of nasopharyngeal carcinoma (NPC) remain unknown. In this study, we found that high expression of EZH2 in NPC was associated closely with an aggressive and/or poor prognostic phenotype ( P <0.05). In NPC cell lines, knockdown of EZH2 by short hairpin RNA was sufficient to inhibit cell invasiveness/metastasis both in vitro and in vivo , whereas ectopic overexpression of EZH2 supported NPC cell invasive capacity with a decreased expression of E-cadherin. In addition, ablation of endogenous Snail in NPC cells virtually totally prevented the repressive activity of EZH2 to E-cadherin, indicating that Snail might be a predominant mediator of EZH2 to suppress E-cadherin. Furthermore, co-immunoprecipitation (IP), chromatin IP and luciferase reporter assays demonstrated that in NPC cells, (1) EZH2 interacted with HDAC1/HDAC2 and Snail to form a repressive complex; (2) these components interact in a linear fashion, not in a triangular fashion, that is, HDAC1 or HDAC2 bridge the interaction between EZH2 and Snail; and (3) the EZH2/HDAC1/2/Snail complex could closely bind to the E-cadherin promoter by Snail, but not YY1, to repress E-cadherin. The data provided in this report suggest a critical role of EZH2 in the control of cell invasion and/or metastasis by forming a co-repressor complex with HDAC1/HDAC2/Snail to repress E-cadherin, an activity that might be responsible, at least in part, for the development and/or progression of human NPCs.
Transportation of Payload Using Multiple Quadrotors via Rigid Connection
Due to the limited payload capability of an aerial robot, multiple quadrotors can be used to manipulate payloads in aerial transportation, construction, and assembly tasks. This paper focuses on the cooperative transportation of a payload rigidly attached to multiple quadrotor bodies. These quadrotors may have different orientations. The dynamics equation of a rigid body in 3-D space is derived to describe the motion of such a transportation system. Robust position and attitude controllers are designed to drive the system to the desired pose. To assign control signals for each quadrotor, the control command allocation method compatible with the case that partial or all quadrotors are in parallel planes is developed. Finally, experimental results are presented to validate the effectiveness of the proposed controllers and control command allocation methods. Different from classical works in this field, this paper can solve the dynamics modeling, controller design, and control command allocation problems for the transportation of a rigidly connected payload using a team of quadrotors with different orientations.
Convalescent plasma treatment of severe COVID-19: a propensity score–matched control study
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments 1 . Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-CoV-2. These antibodies, when transfused into patients infected with SARS-CoV-2, are thought to exert an antiviral effect, suppressing virus replication before patients have mounted their own humoral immune responses 2 , 3 . Virus-specific antibodies from recovered persons are often the first available therapy for an emerging infectious disease, a stopgap treatment while new antivirals and vaccines are being developed 1 , 2 . This retrospective, propensity score–matched case–control study assessed the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 at The Mount Sinai Hospital in New York City. Oxygen requirements on day 14 after transfusion worsened in 17.9% of plasma recipients versus 28.2% of propensity score–matched controls who were hospitalized with COVID-19 (adjusted odds ratio (OR), 0.86; 95% confidence interval (CI), 0.75–0.98; chi-square test P value = 0.025). Survival also improved in plasma recipients (adjusted hazard ratio (HR), 0.34; 95% CI, 0.13–0.89; chi-square test P  = 0.027). Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed. Convalescent plasma for treatment of hospitalized patients with COVID-19 is associated with improved survival in a retrospective comparison with matched controls, supporting further study in randomized controlled trials.
“7M”Advantage of Abrasive Waterjet for Machining Advanced Materials
Under the support of an SBIR Phase II/IIB grant from the National Science Foundation, OMAX has developed and commercialized micro abrasive (µAWJ), culminating A MicroMAX® JetMachining® Center technology for meso-micro machining. AWJ inherently possesses technological and manufacturing merits unmatched by most machine tools. With the commercialization of µAWJ technology, waterjet is now fully capable of multi-mode machining most materials from macro to micro scales (the 7M advantage). Novel accessories and software facilitate machining precision 2D and 3D parts with a wide range of part size and thickness. The versatile waterjet is particularly advantageous for machining difficult and delicate materials, such as alloys, hardened steel, composites, and laminates. One unique capability is machining composites and nanomaterials comprised of metals (reflective and conductive), non-metals (non-conductive), and anything in between. The 7M advantage of waterjet has been taking advantage by machining sample parts made of a variety of advanced materials that are difficult, or even impossible, to machine otherwise.
Similarities and Differences in Interoceptive Bodily Awareness Between US-American and Japanese Cultures: A Focus-Group Study in Bicultural Japanese-Americans
Interoceptive awareness is the conscious perception of sensations that create a sense of the physiological condition of the body. A validation study for the Japanese translation of the Multidimensional Assessment of Interoceptive Awareness (MAIA) surprised with a factor structure different from the original English-language version by eliminating two of eight scales. This prompted an exploration of the similarities and differences in interoceptive bodily awareness between Japanese and European Americans. Bicultural Japanese-Americans discussed concepts and experiences in the two cultures. We conducted focus groups and qualitative thematic analyses of transcribed recordings. 16 participants illustrated cross-cultural differences in interoceptive bodily awareness: switching between languages changes embodied experience; external versus internal attention focus; social expectations and body sensations; emphasis on form versus self-awareness; personal space; and mind–body relationship; context dependency of bodily awareness and self-construal. The participants explained key concepts that present challenges for a Japanese cultural adaptation of the MAIA, specifically the concept of self-regulation lost in the factor analysis. In Japanese culture, self-regulation serves the purpose of conforming to social expectations, rather than achieving an individual self-comforting sense of homeostasis. Our findings will inform the next phase of improving the MAIA’s cross-cultural adaptation.
Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress
Human cytomegalovirus induces and requires fatty acid synthesis. This suggests an essential role for lipidome remodeling in viral replication. We used mass spectrometry to quantify glycerophospholipids in mock-infected and virus-infected fibroblasts, as well as in virions. Although the lipid composition of mock-infected and virus-infected fibroblasts was similar, virions were markedly different. The virion envelope contained twofold more phosphatidylethanolamines and threefold less phosphatidylserines than the host cell. This indicates that the virus buds from a membrane with a different lipid composition from the host cell as a whole. Compared with published datasets, the virion envelope showed the greatest similarity to the synaptic vesicle lipidome. Synaptosome-associated protein of 25 kDa (SNAP-25) is a component of the complex that mediates exocytosis of synaptic vesicles in neurons; and its homolog, SNAP-23, functions in exocytosis in many other cell types. Infection induced the relocation of SNAP-23 to the cytoplasmic viral assembly zone, and knockdown of SNAP-23 inhibited the production of virus. We propose that cytomegalovirus capsids acquire their envelope by budding into vesicles with a lipid composition similar to that of synaptic vesicles, which subsequently fuse with the plasma membrane to release virions from the cell.