Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
39
result(s) for
"Liu, Tiankuan"
Sort by:
Optical Links for ATLAS Liquid Argon Calorimeter Front-end Electronics Readout
2022
We present the optical data links for the ATLAS liquid argon calorimeter. The current status of the vertical cavity surface emitting laser failures, the up-to-date results in searching for the failure cause, experiences gained in the searching process, possible backup plans for the optical transmitters and the lessons learned are also discussed.
A 4.9-GHz Low Power, Low Jitter, LC Phase Locked Loop
2022
This paper presents a low power, low jitter LC phase locked loop (PLL) which has been designed and fabricated in a commercial 0.25-um Silicon-on-Sapphire CMOS technology. Random jitter and deterministic jitter of the PLL are 1.3 ps and 7.5 ps, respectively. The measured tuning range, from 4.6 to 5.0 GHz, is narrower than the expected one, from 3.8 to 5.0 GHz. The narrow tuning range issue has been investigated and traced to the first stage of the divider chain. The power consumption at the central frequency is 111 mW.
Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC
2020
The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter cells at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.
The Design of a High Speed Low Power Phase Locked Loop
2024
The upgrade of the ATLAS Liquid Argon Calorimeter readout system calls for the development of radiation tolerant, high speed and low power serializer ASIC. We have designed a phase locked loop using a commercial 0.25 um Silicon-on-Sapphire (SoS) CMOS technology. Post-layout simulation indicates that tuning range is 3.79-5.01 GHz and power consumption is 104 mW. The PLL has been submitted for fabrication. The design and simulation results are presented.
Development of A 16:1 serializer for data transmission at 5 Gbps
by
Ye, Jingbo
,
Liang, Zhihua
,
Hou, Suen
in
Application specific integrated circuits
,
Data transmission
,
Layouts
2024
Radiation tolerant, high speed and low power serializer ASIC is critical for optical link systems in particle physics experiments. Based on a commercial 0.25 um silicon-on-sapphire CMOS technology, we design a 16:1 serializer with 5 Gbps serial data rate. This ASIC has been submitted for fabrication. The post-layout simulation indicates the deterministic jitter is 54 ps (pk-pk) and random jitter is 3 ps (rms). The power consumption of the serializer is 500 mW. The design details and post layout simulation results are presented in this paper.
High-Speed Serial Optical Link Test Bench Using FPGA with Embedded Transceivers
2024
We develop a custom Bit Error Rate test bench based on Altera's Stratix II GX transceiver signal integrity development kit, demonstrate it on point-to-point serial optical link with data rate up to 5 Gbps, and compare it with commercial stand alone tester. The 8B/10B protocol is implemented and its effects studied. A variable optical attenuator is inserted in the fibre loop to induce transmission degradation and to measure receiver sensitivity. We report comparable receiver sensitivity results using the FPGA based tester and commercial tester. The results of the FPGA also shows that there are more one-to-zero bit flips than zero-to-one bit flips at lower error rate. In 8B/10B coded transmission, there are more word errors than bit flips, and the total error rate is less than two times that of non-coded transmission. Total error rate measured complies with simulation results, according to the protocol setup.
JTAG-based Remote Configuration of FPGAs over Optical Fibers
2024
In this paper, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.
The Clock Distribution System for the ATLAS Liquid Argon Calorimeter Phase-I Upgrade Demonstrator
2024
A prototype Liquid-argon Trigger Digitizer Board (LTDB), called the LTDB Demonstrator, has been developed to demonstrate the functions of the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics upgrade. Forty Analog-to-Digital converters and four FPGAs with embedded multi-gigabit-transceivers on each Demonstrator need high quality clocks. A clock distribution system based on commercial components has been developed for the Demonstrator. The design of the clock distribution system is presented. The performance of the clock distribution system has been evaluated. The components used in the clock distribution system have been qualified to meet radiation tolerance requirements of the Demonstrator.
MUX64, an analogue 64-to-1 multiplexer ASIC for the ATLAS High Granularity Timing Detector
by
Ye, Jingbo
,
Liang, Zhijun
,
Zhang, Li
in
Accelerated aging tests
,
Application specific integrated circuits
,
Chip formation
2023
We present the design and the performance of MUX64, a 64-to-1 analogue multiplexer ASIC for the ATLAS High Granularity Timing Detector (HGTD). The MUX64 transmits one of its 64 inputs selected by six address lines for the voltages or temperatures being monitored to an lpGBT ADC channel. The prototype ASICs fabricated in TSMC 130 nm CMOS technology were prepared in wire-bonding and QFN88 packaging format. A total of 280 chips was examined for functionality and quality assurance. The accelerated aging test conducted at 85 degrees celsius shows negligible degradation over 16 days.
The 120Gbps VCSEL Array Based Optical Transmitter (ATx) Development for the High-Luminosity LHC (HL-LHC) Experiments
by
Liu, Gang
,
Ye, Jingbo
,
Prosser, Alan
in
Application specific integrated circuits
,
Bit error rate
,
Insertion loss
2024
The integration of a Verticle Cavity Surface-Emitting Laser (VCSEL) array and a driving Application-Specific Integrated Circuit (ASIC) in a custom optical array transmitter module (ATx) for operation in the detector front-end is constructed, assembled and tested. The ATx provides 12 parallel channels with each channel operating at 10 Gbps. The optical transmitter eye diagram passes the eye mask and the bit-error rate (BER) less than 1E-12 transmission is achieved at 10 Gbps/ch. The overall insertion loss including the radiation induced attenuation is sufficiently low to meet the proposed link budget requirement.