Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
51,273
result(s) for
"Liu, Wen"
Sort by:
Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19
2020
Coronavirus disease 2019 is a newly emerging infectious disease currently spreading across the world. It is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain that recognizes and binds to the host receptor angiotensin-converting enzyme 2, while the S2 subunit mediates viral cell membrane fusion by forming a six-helical bundle via the two-heptad repeat domain. In this review, we highlight recent research advance in the structure, function and development of antivirus drugs targeting the S protein.
Journal Article
Current status and outlook of advances in exosome isolation
2022
Exosomes are extracellular vesicles with a diameter ranging from 30 to 150 nm, which are an important medium for intercellular communication and are closely related to the progression of certain diseases. Therefore, exosomes are considered promising biomarkers for the diagnosis of specific diseases, and thereby, treatments based on exosomes are being widely examined. For exosome-related research, a rapid, simple, high-purity, and recovery isolation method is the primary prerequisite for exosomal large-scale application in medical practice. Although there are no standardized methods for exosome separation and analysis, various techniques have been established to explore their biochemical and physicochemical properties. In this review, we analyzed the progress in exosomal isolation strategies and proposed our views on the development prospects of various exosomal isolation techniques.
Journal Article
تاريخ التبادلات الأدبية الصينية العربية
by
Zhi, Puhao, 1939- مؤلف
,
Ding, Shuhong مؤلف
,
Zong, Xiaofei, 1975- مؤلف
in
الأدب العربي تأثيرات صينية
,
الأدب الصيني تأثيرات عربية
,
الصين علاقات ثقافية البلاد العربية
2022
ترصد موسوعة \"تاريخ التبادلات الأدبية الصينية العربية\" مسيرة التبادلات الثقافية والأدبية منذ القدم بين الحضارتين الصينية والعربية، والترجمات الصينية الأولى للأدب العربي، كما تسلط الضوء على الأدب الصيني في الدول العربية، ورحلة التبادلات بين الأدباء العرب والصينيين والأحداث التاريخية التي واكبت محطات حركة التبادلات الأدبية بين الجانبين. كما ترصد التاريخ الطويل للأمة العربية في التواصل التجاري والثقافي والأدبي مع الصين، حيث عرفت الصين العرب منذ القرن الثاني قبل الميلاد مع رحلة المبعوث الصيني تشانغ تشيان إلى الغرب في عصر الإمبراطور هان وو دي، ثم عبر طريق الحرير البري القديم وطريق الحرير البحري \"طريق التوابل\" اللذين شهدا تدفقا للتجار العرب على الصين لتنتعش التبادلات الثقافية والأدبية إلى جانب التجارية بين الجانبين يوما بعد يوم.
Unifying the order and disorder dynamics in photoexcited VO2
by
Liu, Hao-Wen
,
Liu, Wen-Hao
,
Wang, Zhi
in
Bonding strength
,
Coherence
,
Density functional theory
2022
Photoinduced phase transition (PIPT) is always treated as a coherent process, but ultrafast disordering in PIPT is observed in recent experiments. Utilizing the real-time time-dependent density functional theory method, here we track the motion of individual vanadium (V) ions during PIPT in VO₂ and uncover that their coherent or disordered dynamics can be manipulated by tuning the laser fluence. We find that the photoexcited holes generate a force on each V–V dimer to drive their collective coherent motion, in competing with the thermal-induced vibrations. If the laser fluence is so weak that the photoexcited hole density is too low to drive the phase transition alone, the PIPT is a disordered process due to the interference of thermal phonons. We also reveal that the photoexcited holes populated by the V–V dimerized bonding states will become saturated if the laser fluence is too strong, limiting the timescale of photoinduced phase transition.
Journal Article
Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model
by
Fan, Hua-Hao
,
An, Xiao-Ping
,
He, Xiao-Qi
in
Antiviral drugs
,
Betacoronavirus - drug effects
,
Betacoronavirus - genetics
2020
Medicines for the treatment of 2019-novel coronavirus (2019-nCoV) infections are urgently needed. However, drug screening using live 2019-nCoV requires high-level biosafety facilities, which imposes an obstacle for those institutions without such facilities or 2019-nCoV. This study aims to repurpose the clinically approved drugs for the treatment of coronavirus disease 2019 (COVID-19) in a 2019-nCoV-related coronavirus model.
A 2019-nCoV-related pangolin coronavirus GX_P2V/pangolin/2017/Guangxi was described. Whether GX_P2V uses angiotensin-converting enzyme 2 (ACE2) as the cell receptor was investigated by using small interfering RNA (siRNA)-mediated silencing of ACE2. The pangolin coronavirus model was used to identify drug candidates for treating 2019-nCoV infection. Two libraries of 2406 clinically approved drugs were screened for their ability to inhibit cytopathic effects on Vero E6 cells by GX_P2V infection. The anti-viral activities and anti-viral mechanisms of potential drugs were further investigated. Viral yields of RNAs and infectious particles were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and plaque assay, respectively.
The spike protein of coronavirus GX_P2V shares 92.2% amino acid identity with that of 2019-nCoV isolate Wuhan-hu-1, and uses ACE2 as the receptor for infection just like 2019-nCoV. Three drugs, including cepharanthine (CEP), selamectin, and mefloquine hydrochloride, exhibited complete inhibition of cytopathic effects in cell culture at 10 μmol/L. CEP demonstrated the most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect [EC50] of 0.98 μmol/L. The viral RNA yield in cells treated with 10 μmol/L CEP was 15,393-fold lower than in cells without CEP treatment ([6.48 ± 0.02] × 10vs. 1.00 ± 0.12, t = 150.38, P < 0.001) at 72 h post-infection (p.i.). Plaque assays found no production of live viruses in media containing 10 μmol/L CEP at 48 h p.i. Furthermore, we found CEP had potent anti-viral activities against both viral entry (0.46 ± 0.12, vs.1.00 ± 0.37, t = 2.42, P < 0.05) and viral replication ([6.18 ± 0.95] × 10vs. 1.00 ± 0.43, t = 3.98, P < 0.05).
Our pangolin coronavirus GX_P2V is a workable model for 2019-nCoV research. CEP, selamectin, and mefloquine hydrochloride are potential drugs for treating 2019-nCoV infection. Our results strongly suggest that CEP is a wide-spectrum inhibitor of pan-betacoronavirus, and further study of CEP for treatment of 2019-nCoV infection is warranted.
Journal Article
YOLOP: You Only Look Once for Panoptic Driving Perception
2022
A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making reasonable decisions while driving. We present a panoptic driving perception network (you only look once for panoptic (YOLOP)) to perform traffic object detection, drivable area segmentation, and lane detection simultaneously. It is composed of one encoder for feature extraction and three decoders to handle the specific tasks. Our model performs extremely well on the challenging BDD100K dataset, achieving state-of-the-art on all three tasks in terms of accuracy and speed. Besides, we verify the effectiveness of our multi-task learning model for joint training via ablative studies. To our best knowledge, this is the first work that can process these three visual perception tasks simultaneously in real-time on an embedded device Jetson TX2(23 FPS), and maintain excellent accuracy. To facilitate further research, the source codes and pre-trained models are released at https://github.com/hustvl/YOLOP.
Journal Article
Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice
2020
Primordial follicle assembly in the mouse occurs during perinatal ages and largely determines the ovarian reserve that will be available to support the reproductive life span. The development of primordial follicles is controlled by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time series on murine ovaries, coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to postnatal day (PD) 3 were reported. Along with confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified 5 distinct cell clusters associated with germ cells and 6 with granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. By building single-cell pseudotemporal trajectories, 3 states and 1 branch point of fate transition for the germ cells were revealed, as well as for the granulosa cells. Moreover, Gene Ontology (GO) term enrichment enabled identification of the biological process most represented in germ cells and granulosa cells or common to both cell types at each specific stage, and the interactions of germ cells and granulosa cells basing on known and novel pathway were presented. Finally, by using single-cell regulatory network inference and clustering (SCENIC) algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell-specific transcription programs throughout the period of investigation. Above all, this study provides the whole transcriptome landscape of ovarian cells and unearths new insights during primordial follicle assembly in mice.
Journal Article