Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
420 result(s) for "Liu, Xinghui"
Sort by:
Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction
The poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO 3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO’s structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Ir x+ ; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm −2 and excellent durability in acidic media due to the high oxidation state of metal on MoO 3 . Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts. The poor catalyst stability for oxygen evolution in acidic media has been a long-time issue. Here, authors demonstrate iridium on MoO 3 exhibits a low overpotential for oxygen evolution and excellent durability in acidic media due to the high oxidation state of iridium metal on MoO 3 .
Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution
Single-atom-catalysts (SACs) afford a fascinating activity with respect to other nanomaterials for hydrogen evolution reaction (HER), yet the simplicity of single-atom center limits its further modification and utilization. Obtaining bimetallic single-atom-dimer (SAD) structures can reform the electronic structure of SACs with added atomic-level synergistic effect, further improving HER kinetics beyond SACs. However, the synthesis and identification of such SAD structure remains conceptually challenging. Herein, systematic first-principle screening reveals that the synergistic interaction at the NiCo-SAD atomic interface can upshift the d-band center, thereby, facilitate rapid water-dissociation and optimal proton adsorption, accelerating alkaline/acidic HER kinetics. Inspired by theoretical predictions, we develop a facile strategy to obtain NiCo-SAD on N-doped carbon (NiCo-SAD-NC) via in-situ trapping of metal ions followed by pyrolysis with precisely controlled N-moieties. X-ray absorption spectroscopy indicates the emergence of Ni-Co coordination at the atomic-level. The obtained NiCo-SAD-NC exhibits exceptional pH-universal HER-activity, demanding only 54.7 and 61 mV overpotentials at −10 mA cm −2 in acidic and alkaline media, respectively. This work provides a facile synthetic strategy for SAD catalysts and sheds light on the fundamentals of structure-activity relationships for future applications. While single, dispersed atoms enable efficient atomic utilization, controllably preparing single-atom dimers remains challenging. Here, authors prepare nickel-cobalt single-atom dimers as high-performance pH-universal H 2 evolution electrocatalysts.
Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors
Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. We enrolled 102 COVID-19 patients who were admitted to Renmin Hospital (Wuhan, China). All patients were classified into moderate, severe and critical groups according to their symptoms. 45 control samples of healthy volunteers were also included. Inflammatory cytokines and C-Reactive Protein (CRP) profiles of serum samples were analyzed by specific immunoassays. Results showed that COVID-19 patients have higher serum level of cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10) and CRP than control individuals. Within COVID-19 patients, serum IL-6 and IL-10 levels are significantly higher in critical group (n = 17) than in moderate (n = 42) and severe (n = 43) group. The levels of IL-10 is positively correlated with CRP amount (r = 0.41, P < 0.01). Using univariate logistic regression analysis, IL-6 and IL-10 are found to be predictive of disease severity and receiver operating curve analysis could further confirm this result (AUC = 0.841, 0.822 respectively). Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.
Recent advances and future technologies in nano-microplastics detection
The degradation of mismanaged plastic waste in the environment results in the formation of microplastics (MPs) and nanoplastics (NPs), which pose significant risks to ecosystems and human health. These particles are pervasive, detected even in remote regions, and can enter the food chain, accumulating in organisms and causing harm depending on factors such as particle load, exposure dose, and the presence of co-contaminants. Detecting and analyzing NMPs present unique challenges, particularly as particle size decreases, making them increasingly difficult to identify. Moreover, the absence of standardized protocols for their detection and analysis further hinders comprehensive assessments of their environmental and biological impacts. This review provides a detailed overview of the latest advancements in technologies for sampling, separation, measurement, and quantification of NMPs. It highlights promising approaches, supported by practical examples from recent studies, while critically addressing persistent challenges in sampling, characterization, and analysis. This work examines cutting-edge developments in nanotechnology-based detection, integrated spectro-microscopic techniques, and AI-driven classification algorithms, offering solutions to bridge gaps in NMP research. By exploring state-of-the-art methodologies and presenting future perspectives, this review provides valuable insights for improving detection capabilities at the micro- and nanoscale, enabling more effective analysis across diverse environmental contexts.
Designing advanced S‐scheme CdS QDs/La‐Bi2WO6 photocatalysts for efficient degradation of RhB
Finding effective strategies to design efficient photocatalysts and decompose refractory organic compounds in wastewater is a challenging problem. Herein, by coupling element doping and constructing heterostructures, S‐scheme CdS QDs/La‐Bi2WO6 (CS/LBWO) photocatalysts are designed and synthesized by a simple hydrothermal method. As a result, the RhB degradation efficiency of the optimized 5% CS/LBWO reached 99% within 70 min of illumination with excellent stability and recyclability. CS/LBWO shows improvement in the adsorption range of visible light and promotes electron–hole pair generation/migration/separation, attributing the superior degradation performance. The degradation RhB mechanism is proposed by a free radical capture experiment, electron paramagnetic resonance, and high‐performance liquid chromatography‐mass spectrometry results, indicating that h+ and •O2– play a significant role during four degradation processes: de‐ethylation, chromophore cleavage, ring opening, and mineralization. Based on in situ irradiated X‐ray photoelectron spectroscopy, Mulliken electronegativity theory, and the work function results, the S‐scheme heterojunction of CS/LBWO promotes the transfer of photogenerated electron–hole pairs and promotes the generation of reactive radicals. This work not only reports that 5% CS/LBWO is a promising photocatalyst for degradation experiments but also provides an approach to design advanced photocatalysts by coupling element doping and constructing heterostructures.
Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus
Gestational diabetes mellitus (GDM), a high-risk pregnancy complication of great effect on the perinatal health of women and newborns, may cause changes of gut microbiota in mothers and further affect gut microbiota in newborns. This study aimed to investigate the potential effect of mother GDM on newborns' gut microbiota. Meconium DNA was extracted from a total of 34 full-term and C-sectioned newborns, in which 20 newborns had mothers diagnosed with GDM, while 14 had unaffected mothers. Sequencing and bioinformatics analysis of 16S rRNA indicated that the gut microbiota of GDM newborns showed differences compared to control newborns. The taxonomy analyses suggested that the overall bacterial content significantly differed by maternal diabetes status, with the microbiome of the GDM group showing lower alpha-diversity than that of control group. The phyla of Proteobacteria and Actinobacteria in GDM newborns increased, while that of Bacteroidetes significantly reduced (P<0.05). Moreover, several unique gut microbiota in phylum of Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Planctomycetes found in control newborns were absent in GDM ones. At genus level, the relative abundance of Prevotella and Lactobacillus significantly decreased (P<0.05) in GDM newborns. Correlation analysis indicated that maternal fasting glucose levels were positively correlated with the relative abundance of phylum Actinobacteria and genus Acinetobacter, while negatively correlated with that of phylum Bacteroidetes and genus Prevotella. However, bacteria in GDM grade A2 (GDM_A2) newborns did not show any statistical variation compared to those from control newborns, which might be attributed to the additional intervention by insulin. The results of this study have important implications for understanding the potential effects of GDM on the gut microbiota of newborns and thus possibly their metabolism at later stages in their lives.
Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia
HighlightsCu species with tunable loading supported on N-doped TiO2/C were successfully fabricated utilizing MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Cu species with tunable loading supported on N-doped TiO2/C were successfully fabricated utilizing MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy.Restructured CuN4&Cu4 performed the highest NH3 yield (88.2 mmol h−1 gcata−1) and FE (~94.3%) at − 0.75 V due to optimal adsorption of NO3− and rapid conversion of the key intermediates.Direct electrochemical nitrate reduction reaction (NITRR) is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia. However, the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism. Herein, Cu species (single-atom, clusters, and nanoparticles) with tunable loading supported on N-doped TiO2/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy. Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential, as evidenced by the advanced operando X-ray absorption spectroscopy, and there exists an incompletely reversible transformation of the restructured structure to the initial state. Notably, restructured CuN4&Cu4 deliver the high NH3 yield of 88.2 mmol h−1 gcata−1 and FE (~ 94.3%) at − 0.75 V, resulting from the optimal adsorption of NO3− as well as the rapid conversion of *NH2OH to *NH2 intermediates originated from the modulation of charge distribution and d-band center for Cu site. This work not only uncovers CuN4&Cu4 have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.
The Role of Antioxidant Enzymes in the Ovaries
Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more antioxidant therapy in humans has to been performed.
miR‐203 inhibits cell proliferation, invasion, and migration of non‐small‐cell lung cancer by downregulating RGS17
Involvement of the RGS17 oncogene in the promotion of non‐small‐cell lung cancer (NSCLC) has been reported, but the regulation mechanism in NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression, and their dysregulation has been implicated in tumorigenesis. To understand the role of miRNAs in Regulator of G Protein Signaling 17 (RGS17)‐induced NSCLC, we showed that miR‐203 was downregulated during tumorigenesis, and inhibited the proliferation and invasion of lung cancer cells. We then determined whether miR‐203 regulated NSCLC by targeting RGS17. To characterize the regulatory effect of miR‐203 on RGS17, we used lung cancer cell lines, A549 and Calu‐1, and the constructed miR‐203 and RGS17 overexpression vectors. The CCK8 kit was used to determine cell proliferation, and the Transwell® assay was used to measure cell invasion and migration. RT‐PCR, western blots, and immunofluorescence were used to analyze expression of miR‐203 and RGS17, and the luciferase reporter assay was used to examine the interaction between miR‐203 and RGS17. Nude mice were used to characterize in vivo tumor growth regulation. Expression of miR‐203 inhibited proliferation, invasion, and migration of lung cancer cell lines A549 and Calu‐1 by targeting RGS17. The regulatory effect of miR‐203 was inhibited after overexpression of RGS17. The luciferase reporter assay showed that miR‐203 downregulated RGS17 by direct integration into the 3′‐UTR of RGS17 mRNA. In vivo studies showed that expression of miR‐203 significantly inhibited growth of tumors. Taken together, the results suggested that expression of miR‐203 inhibited tumor growth and metastasis by targeting RGS17. The expression of RGS17 promoted non‐small cell lung cancer (NSCLC) cell proliferation, invasion, and migration. The expression of miR‐203 was downregulated in NSCLC. The expression of miR‐203 inhibited NSCLC proliferation, invasion, and migration by targeting RGS17.
Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization
Background Acute ischemic stroke (AIS) is the most common type of cerebrovascular disease and is a leading cause of disability and death worldwide. Recently, a study suggested that transformation of microglia from the pro-inflammatory M1 state to the anti-inflammatory and tissue-reparative M2 phenotype may be an effective therapeutic strategy for ischemic stroke. Celastrol, a traditional oriental medicine, may have anti-inflammatory and neuroprotective effects. However, the underlying mechanisms remain unknown. Methods We first determined the expression levels of inflammatory factors in patients and rodent models associated with AIS; we then determined the anti-inflammatory effects of celastrol in AIS, both in vivo and in vitro, using animal models of middle cerebral artery occlusion (MCAO) and cell models of oxygen-glucose deprivation (OGD) treatment with or without celastrol, respectively. Results The results indicated that expression of both inflammatory (interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α) cytokines, as well as the anti-inflammatory cytokine, IL-33, and IL-10, were increased following AIS in patients and in animal models. Furthermore, in vitro experiments confirmed that celastrol treatment decreased inflammatory cytokine expression induced by OGD through an IL-33/ST2 axis-mediated M2 microglia/macrophage polarization. Finally, celastrol is protected against ischemic-induced nerve injury, both in vivo and in vitro. Conclusions Taken together, these data suggest that celastrol post-treatment reduces ischemic stroke-induced brain damage, suggesting celastrol may represent a novel potent pharmacological therapy.