Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
831 result(s) for "Liu, Zhenxing"
Sort by:
Short‐term wind speed multistep combined forecasting model based on two‐stage decomposition and LSTM
In order to better extract and study the characteristics of the wind speed in time‐domain and frequency‐domain, so as to solve the time‐domain randomness and frequency‐domain complexity problems of the wind speed signal, a combined short‐term prediction model (WD‐VMD‐DLSTM‐AT), which is based on two‐stage decomposition (WD + VMD), double long‐short‐term memory network (DLSTM) and attention mechanism (AT), is proposed; on this basis, a multi‐input multiple output (MIMO) codec model based on attention mechanism (MMED‐AT) is proposed for multiple short‐term wind speed step forecast. Through experimental comparison and analysis, the proposed combined forecasting model has the smallest statistical error and the best prediction accuracy; the MMED‐AT models based on the combined model can obviously eliminate the cumulative error of recursive multistep prediction and further improve the stability of multistep prediction.
Flow Pattern Identification of Oil–Water Two-Phase Flow Based on SVM Using Ultrasonic Testing Method
A flow pattern identification method combining ultrasonic transmission attenuation with an ultrasonic reflection echo is proposed for oil–water two-phase flow in horizontal pipelines. Based on the finite element method, two-dimensional geometric simulation models of typical oil–water two-phase flow patterns are established, using multiphysics coupling simulation technology. An ultrasonic transducer test system of a horizontal pipeline with an inner 50 mm diameter was built, and flow pattern simulation experiments of oil–water two-phase flow were carried out in the tested field area. The simulation results show that the ultrasonic attenuation coefficient is extracted to identify the W/O&O/W dispersion flow using the ultrasonic transmission attenuation method, and the identification accuracy is 100%. By comparison, using the ultrasonic reflection echo method, the echo duration is extracted as an input feature vector of support vector machine (SVM), and the identification accuracy of the stratified flow and dispersed flow is 95.45%. It was proven that the method of the ultrasonic transmission attenuation principle combined with the ultrasonic reflection echo principle can identify oil–water two-phase flow patterns accurately and effectively, which provides a theoretical basis for the flow pattern identification of liquid–liquid multiphase flow.
Design and Performance Analysis of a Hybrid Flexible Pressure Sensor with Wide Linearity and High Sensitivity
This study presents a wide-linear-range flexible pressure sensor based on a gradient non-uniform porous structure. Through co-optimization of material composition and structural parameters, the sensor integrates high sensitivity, a broad linear response range, and excellent stability. The sensing layer is fabricated using a PVC/CNT composite slurry, with interdigital silver electrodes screen-printed on a PET substrate. A porous architecture is constructed via solution blending and a template method. Innovatively, orthogonal experiments were employed to optimize the conductive filler concentration and porosity. A mixed sugar template comprising particles of 50–75 μm and 125–150 μm was introduced to form a gradient non-uniform porous structure, effectively expanding the linear response range. Experimental results demonstrate that the sensor exhibits outstanding linearity (R2 > 0.99) and high sensitivity (5.57 kPa−1) over a broad pressure range of 0–120 kPa. It also shows a dynamic response speed of 50 ms, cyclic stability exceeding 500 cycles, and signal fluctuation of less than 5%. Scanning electron microscopy (SEM) analysis reveals the synergistic mechanism of the non-uniform pores, confirming the effectiveness of this design in reconciling the trade-off between sensitivity and linear range. This study offers new insights into the performance optimization of flexible pressure sensors and demonstrates significant potential for applications in health monitoring and electronic skin (E-skin).
Development of a Radioactive Sorting and Volume Reduction System for Radioactive Contaminated Sandy Soil Using Plastic Scintillator and NaI Detectors
Radioactively contaminated sandy soil is commonly encountered during nuclear facility decommissioning and nuclear accident response, and its rapid sorting and volume reduction are crucial for achieving waste minimization and lowering remediation costs. This study designed and developed a radiation measurement system based on a large-volume plastic scintillator and a NaI array detector, focusing on the design, implementation, and performance validation of its radiation detection and signal processing subsystems. The system employed differential measurement to obtain the net radioactive count rate of sandy soil, while enhancing energy spectrum stability through programmable gain control and temperature stabilization. Experimental results demonstrated that both plastic scintillator arrays effectively achieved dynamic background subtraction within a 1.8 s measurement cycle, with net count rate errors controlled below 10%. The NaI detector array achieved an energy resolution better than 8% at 662 keV, with the peak channel drift within ±1 channel. Rapid activity measurements for radioactive sources such as Am and Cs exhibited errors below 10%, meeting the key technical requirements for sandy soil separation and volume reduction. These findings provided data support and methodological reference for subsequent system integration and engineering application of sorting and volume reduction equipment.
miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210KO) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3' UTR of Fas2 (Fas2ΔmiR-210) by CRISPR-Cas9 advances the evening phase as in miR-210KO. Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO. In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO. Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior.
Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.
Knockout of bcas3 gene causes neurodevelopment defects in zebrafish
Background Neurodevelopmental disorders manifest in early childhood and are characterized by cognitive deficits, intellectual disabilities, motor disorders, and social dysfunction. Mutations in BCAS3 gene are associated with syndromic neurodevelopmental disorders in humans, while the detailed pathological mechanism is still unknown. Methods CRISPR/Cas9 technology was used to generate a bcas3 knockout zebrafish model. To investigate the effects of bcas3 on development, morphological evaluations were conducted. Locomotor behaviors, including performance in the light-dark test, novel tank test, mirror test, shoaling test, and social test, were assessed through video tracing and quantitative analysis of movement parameters. Transcriptome sequencing analysis was used to identify dysregulated pathways associated with development process. Additionally, Acridine Orange staining was employed to evaluate apoptosis. Western blot and real-time RT-PCR were used to analyze the expression levels of genes. Results Bcas3 knockout zebrafish exhibited early larval phenotypes resembling clinical features of patients with BCAS3 mutations, including global delayed development at early embryonic development, microcephaly and reduced body length. Behavior analysis revealed abnormal motor dysfunction, such as social impairment, increased anxiety and heightened aggression. Notably, human BCAS3 rescued the developmental defects and motor disorders in bcas3 knockout larvae. Transcriptomic analysis identified substantial downregulation of genes related to embryonic development and startle response, brain development and neuron migration in bcas3 knockout zebrafish, such as rpl10 , cyfip2 , erbb3b , eya4a , nr2f1b , prkg1b and ackr3b . Additionally, increased apoptosis was observed in bcas3 knockout zebrafish, which was further confirmed by Acridine Orange staining and a decreased Bcl2/Bax ratio in western blot analysis. The increased apoptosis observed in the brain of bcas3 knockout larvae could contribute to the developmental and locomotor deficits. Conclusion The bcas3 knockout zebrafish model recapitulates the clinical features observed in patients with BCAS3 mutations. Our results suggest that increased apoptosis may underlie the developmental deficits and motor disorders in these patients. The bcas3 knockout zebrafish model provides a valuable tool to identify dysregulated molecular targets for therapeutic intervention during the early stages of disease progression.
Chromosome-level genome of black cutworm provides novel insights into polyphagy and seasonal migration in insects
Background The black cutworm, Agrotis ipsilon , is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. Results We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. Conclusions This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.
Isolated cryptococcal osteomyelitis of the sacrum in an immunocompetent patient: a case report and literature review
Background Cryptococcus neoformans , an opportunistic fungal pathogen, seldom causes infection in immunocompetent people. Cryptococcal osteomyelitis is an uncommon condition in which Cryptococcus invades the bone. It usually occurs as part of a disseminated infection and rarely in isolation. The spine has been reported as the most common site of cryptococcal osteomyelitis; however, isolated case of sacrum involvement in immunocompetent patients has never been reported. Case presentation We report the case of a 37-year-old man without underlying disease who presented with progressive low back and sacrococcygeal pain. The patient was initially diagnosed with sacral tumour by a local doctor, and subsequently, after admission, was diagnosed with sacral tuberculosis. He was empirically treated with antitubercular drugs. The patient failed to respond to antitubercular drugs and complained of worsening low back pain. Additionally, he developed persistent radiating pain and numbness in his legs. For further diagnosis, we performed a computed tomography-guided puncture biopsy of the sacrum, which revealed granulomatous inflammation with massive macrophage infiltration and special staining revealed a fungal infection. We performed sacral debridement and drainage and obtained purulent specimens for pathological examination and microbial culture. Microbial identification and drug susceptibility tests revealed a Cryptococcus neoformans infection sensitive to fluconazole. Postoperatively, the persistent radiating pain and numbness in the legs resolved. After 12 consecutive weeks of antifungal therapy, all his symptoms resolved. The patient remained without any signs of recurrence at the 8-month follow-up. Conclusion We reported a rare case of isolated sacrum cryptococcal osteomyelitis in an immunocompetent patient. Furthermore, we identified and reviewed 18 published cases of spine cryptococcal osteomyelitis. Immunocompetent individuals are also at risk for cryptococcal osteomyelitis. Clinical manifestation and imaging are insufficient to diagnose cryptococcal osteomyelitis of the spine, and invasive examinations, such as puncture biopsy and fungal examinations, are needed. Antifungal therapy yields satisfactory results for the treatment of cryptococcal osteomyelitis of the spine, however, if the infective lesion is large, especially when it compresses the spinal cord and nerves, a regimen combining aggressive surgery with antifungal therapy is indispensable.