Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Liu, Zhulong"
Sort by:
Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA
Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. Firstly, Tf-conjugated ligands were synthesized. Secondly, PTX- and DNA-loaded NLC (PTX-DNA-NLC) was prepared. Finally, Tf-containing ligands were used for the surface decoration of NLC. Their average size, zeta potential, drug, and gene loading were evaluated. Human non-small cell lung carcinoma cell line (NCl-H460 cells) was used for the testing of in vitro transfection efficiency, and in vivo transfection efficiency of NLC was evaluated on mice bearing NCl-H460 cells. Tf-decorated PTX and DNA co-encapsulated NLC (Tf-PTX-DNA-NLC) were nano-sized particles with positive zeta potential. Tf-PTX-DNA-NLC displayed low cytotoxicity, high gene transfection efficiency, and enhanced antitumor activity in vitro and in vivo. The results demonstrated that Tf-PTX-DNA-NLC can achieve impressive antitumor activity and gene transfection efficiency. Tf decoration also enhanced the active targeting ability of the carriers to NCl-H460 cells. The novel drug and gene delivery system offers a promising strategy for the treatment of lung cancer.
Prognostic value of PAX9 in patients with esophageal squamous cell carcinoma and its prediction value to radiation sensitivity
Abnormal paired box 9 (PAX9) expression is associated with tumorigenesis, cancer development, invasion and metastasis. The present study investigated the prognostic significance of PAX9 in esophageal squamous cell carcinoma (ESCC) and its role in predicting radiation sensitivity. A total of 52.8% (121/229) ESCC tissues were positive for PAX9. The 1-, 3- and 5-year disease-free survival (DFS) rates were 72.2, 35.2 and 5.6%, respectively, and the overall survival (OS) rates were and 86.1, 44.4, and 23.1%, respectively, in PAX9-positive tumors. In PAX9-negative tumors, the one-, three- and five-year DFS rates were 76.9, 47.9 and 24.0%, and the OS rates were 90.9, 57.9 and 38.8%, respectively. Univariate analysis revealed that PAX9, differentiation, T stage, lymph node metastasis, and tumor-node-metastasis stage were associated with OS. Multivariate analysis of DFS and OS revealed that the hazard ratios for PAX9 were 0.624 (95% CI: 0.472-0.869, P=0.004) and 0.673 (95% CI: 0.491-0.922, P=0.014), respectively. Patients that received adjuvant therapy exhibited significant differences in the 5-year DFS (P<0.001) and OS (P<0.001). PAX9-positive ESCC patients who received post-surgery radiotherapy had a significantly greater 5-year DFS (P=0.011) and OS (P=0.009) than patients who received surgery only. Thus, PAX9 may be an independent prognostic factor for the surgical treatment of ESCC and a possible predictor of radiation sensitivity.
AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21
Several eukaryotic Heme-associated proteins (HAPs) have been reported to bind specifically to DNA fragments containing CCAAT-box; however, the physiological functions and direct targets of these HAP proteins in plants remain unclear. In this study, we showed that AtHAP5A as a transcription factor interacted with CCAAT motif in vivo, and AtXTH21, one direct target of AtHAP5A, was involved in freezing stress resistance. The AtHAP5A overexpressing plants were more tolerant, whereas the loss-of-function mutant of AtHAP5A was more sensitive to freezing stress than wild-type plants. Chromatin immunoprecipitation (ChIP) assay demonstrated that AtHAP5A could bind to five fragments that contained CCAAT motifs in the AtXTH21 promoter. Similarly, the AtXTH21 overexpressing plants exhibited improved freezing resistance, while xth21 knockdown mutants displayed decreased freezing resistance. Notably, the modulated freezing resistance of AtHAP5A overexpressing plants and knockout mutant could be reversed by the xth21 mutant and AtXTH21 overexpressing plants, respectively, indicating that AtHAP5A might act upstream of AtXTH21 in freezing stress. Additionally, modulation of AtHAP5A and AtXTH21 expression had the same effects on abscisic acid (ABA) sensitivity and reactive oxygen species (ROS) metabolism. Taken together, these results demonstrated that AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to the CCAAT motif of AtXTH21.
Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses
Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), [Formula: see text] and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.
Comparative Physiological and Transcriptional Analyses of Two Contrasting Drought Tolerant Alfalfa Varieties
Drought is one of major environmental determinants of plant growth and productivity. Alfalfa (Medicago sativa) is a legume perennial forage crop native to the arid and semi-arid environment, which is an ideal candidate to study the biochemical and molecular mechanisms conferring drought resistance in plants. In this study, drought stress responses of two alfalfa varieties, Longdong and Algonquin, were comparatively assayed at the physiological, morphological, and transcriptional levels. Under control condition, the drought-tolerant Longdong with smaller leaf size and lower stomata density showed less water loss than the drought-sensitive Algonquin. After exposing to drought stress, Longdong showed less severe cell membrane damage, more proline, and ascorbate (ASC) contents and less accumulation of H2O2 than Algonquin. Moreover, significantly higher antioxidant enzymes activities after drought treatment were found in Longdong when compared with Algonquin. In addition, transcriptional expression analysis showed that Longdong exhibited significantly higher transcripts of drought-responsive genes in leaf and root under drought stress condition. Taken together, these results indicated that Longdong variety was more drought-tolerant than Algonquin variety as evidenced by less leaf firing, more lateral root number, higher relative aboveground/underground biomass per plant and survival rate.
Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide
Background Tall fescue is a widely used cool season turfgrass and relatively sensitive to high temperature. Chemical compounds like melatonin (MT) and 24-epibrassinolide (EBL) have been reported to improve plant heat stress tolerance effectively. Results In this study, we reported that MT and EBL pretreated tall fescue seedlings showed decreased reactive oxygen species (ROS), electrolyte leakage (EL) and malondialdehide (MDA), but increased chlorophyll (Chl), total protein and antioxidant enzyme activities under heat stress condition, resulting in improved plant growth. Transcriptomic profiling analysis showed that 4311 and 8395 unigenes were significantly changed after 2 h and 12 h of heat treatments, respectively. Among them, genes involved in heat stress responses, DNA, RNA and protein degradation, redox, energy metabolisms, and hormone metabolism pathways were highly induced after heat stress. Genes including FaHSFA3 , FaAWPM and FaCYTC2 were significantly upregulated by both MT and EBL treatments, indicating that these genes might function as the putative target genes of MT and EBL. Conclusions These findings indicated that heat stress caused extensively transcriptomic reprogramming of tall fescue and exogenous application of MT and EBL effectively improved thermotolerance in tall fescue.
The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis
The accumulation of flavonoids is activated by various abiotic stresses, and the induction of reactive oxygen species (ROS) especially hydrogen peroxide (H2O2) is a general response to abiotic stress in plants. However, the direct link between flavonoids and H2O2 and underlying mechanism remain elusive. In this study, we found that the concentrations of anthocyanin and flavonoids were significantly induced by H2O2 treatment. Furthermore, we found that the transcript level of ZINC FINGER of ARABIDOPSIS THALIANA 6 (ZAT6) was significantly activated after exogenous H2O2 treatment, and modulation of AtZAT6 expression positively affected the concentrations of both anthocyanin and total flavonoids. Notably, exogenous H2O2-induced anthocyanin synthesis was largely alleviated in AtZAT6 knockdown plants, but showed higher level in AtZAT6 overexpressing plants. AtZAT6 directly activated the expressions of TT5, TT7, TT3, TT18, MYB12, and MYB111 through binding to their promoters with TACAAT elements of these genes, and the activation of MYB12 and MYB111 up-regulated the expressions of TT4 and TT6. Taken together, this study indicates that AtZAT6 plays important role in H2O2-activated anthocyanin synthesis, via directly binding to the promoters of several genes that involved in anthocyanin synthesis.
Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass Cynodon dactylon (L). Pers. by exogenous melatonin
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism.
PHD finger proteins function in plant development and abiotic stress responses: an overview
The plant homeodomain (PHD) finger with a conserved Cys4-His-Cys3 motif is a common zinc-binding domain, which is widely present in all eukaryotic genomes. The PHD finger is the “reader” domain of methylation marks in histone H3 and plays a role in the regulation of gene expression patterns. Numerous proteins containing the PHD finger have been found in plants. In this review, we summarize the functional studies on PHD finger proteins in plant growth and development and responses to abiotic stresses in recent years. Some PHD finger proteins, such as VIN3, VILs, and Ehd3, are involved in the regulation of flowering time, while some PHD finger proteins participate in the pollen development, for example, MS, TIP3, and MMD1. Furthermore, other PHD finger proteins regulate the plant tolerance to abiotic stresses, including Alfin1, ALs, and AtSIZ1. Research suggests that PHD finger proteins, as an essential transcription regulator family, play critical roles in various plant biological processes, which is helpful in understanding the molecular mechanisms of novel PHD finger proteins to perform specific function.
Neuropilin-1-target self-assembled peptide nanoparticles contribute to tumor treatment by inducing pyroptosis
Background Expression of the Neuropilin-1 (NRP1) is reported in malignant cells of multiple human tumor types represented as a tumor marker. Targeting NRP1 with a peptide, CK3, is used for tumor molecular imaging, raising the question of the therapeutic potential of CK2, a peptide with a CK3 backbone which enhanced targeting and tumor enrichment properties. Methods The tumor targeting and enrichment capacity of CK2 was detected by IncuCyte, flow cytometry and animal living imaging. To enhance its therapeutic efficacy, we developed a self-assembling peptide nanoparticles Fmoc-Gffy-AP-CK2, incorporating a peptide protective domain (Fmoc), a self-assemble domain (Gffy) and an anti-tumor peptide (AP). In vitro cellular assays and in vivo tumor-xenograft experiments were conducted to evaluate the anti-tumor effect of Fmoc-Gffy-AP-CK2. Results While CK3 peptide specifically targets NRP1 in vitro and in vivo, CK2 markedly achieves stronger binding with NRP1 and higher tumor accumulation. Fmoc-Gffy-AP-CK2 exhibits a potent NRP1-dependent cytotoxic effect in vitro and in vivo. Mechanically, Fmoc-Gffy-AP-CK2 triggered caspase3/gasdermin E (GSDME)-mediated pyroptosis. Fmoc-Gffy-AP-CK2 also promotes the response rate of PD-1 checkpoint blockade. Conclusions CK2, When combined with Fmoc-Gffy-AP domain, Demonstrated high anti-tumor efficacy, Providing a novel strategy for tumor treatment.