Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Liverani, Anna"
Sort by:
Antibiotic Treatment of Severe Exacerbations of Chronic Obstructive Pulmonary Disease with Procalcitonin: A Randomized Noninferiority Trial
by
Ruggieri, Valentina
,
Vicini, Roberto
,
Beghè, Bianca
in
Aged
,
Air pollution
,
Anti-Bacterial Agents - administration & dosage
2015
The duration of antibiotic treatment of exacerbations of COPD (ECOPD) is controversial. Serum procalcitonin (PCT) is a biomarker of bacterial infection used to identify the cause of ECOPD.
We investigated whether a PCT-guided plan would allow a shorter duration of antibiotic treatment in patients with severe ECOPD. For this multicenter, randomized, non-inferiority trial, we enrolled 184 patients hospitalized with ECOPD from 18 hospitals in Italy. Patients were assigned to receive antibiotics for 10 days (standard group) or for either 3 or 10 days (PCT group). The primary outcome was the rate of ECOPD at 6 months. Having planned to recruit 400 patients, we randomized only 183: 93 in the PCT group and 90 in the standard group. Thus, the completed study was underpowered. The ECOPD rate at 6 months between PCT-guided and standard antibiotic treatment was not significant (% difference, 4.04; 90% confidence interval [CI], -7.23 to 15.31), but the CI included the non-inferiority margin of 15. In the PCT-guided group, about 50% of patients were treated for 3 days, and there was no difference in primary or secondary outcomes compared to patients treated for 10 days.
Although the primary and secondary clinical outcomes were no different for patients treated for 3 or 10 days in the PCT group, the conclusion that antibiotics can be safely stopped after 3 days in patients with low serum PCT cannot be substantiated statistically. Thus, the results of this study are inconclusive regarding the noninferiority of the PCT-guided plan compared to the standard antibiotic treatment. The study was funded by Agenzia Italiana del Farmaco (AIFA-FARM58J2XH). Clinical trial registered with www.clinicaltrials.gov (NCT01125098).
ClinicalTrials.gov NCT01125098.
Journal Article
Orthogonal proteogenomic analysis identifies the druggable PA2G4-MYC axis in 3q26 AML
by
La Starza, Roberta
,
Marchesini, Matteo
,
Zamponi, Raffaella
in
631/154/1435/2163
,
631/154/555
,
631/1647/767/1424
2024
The overexpression of the ecotropic viral integration site-1 gene (
EVI1/MECOM
) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of
EVI1
. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the
EVI1
chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein.
PA2G4
overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.
The overexpression of the ecotropic viral integration site-1 gene (
EVI1/MECOM
) marks the most lethal acute myeloid leukemia subgroup carrying 3q26 abnormalities. Here, pan-histone deacetylase inhibitors are identified as potent repressors of EVI1 and PA2G4 as a druggable target.
Journal Article
Deciphering the Genomic Landscape and Pharmacological Profile of Uncommon Entities of Adult Rhabdomyosarcomas
2021
Adult rhabdomyosarcoma (RMS) represents an uncommon entity with an incidence of less than 3% of all soft tissue sarcomas (STS). Consequently, the natural history and the clinical management of this disease are infrequently reported. In order to fill this gap, we investigated the molecular biology of an adult RMS case series. The expression of epithelial mesenchymal transition-related gene and chemoresistance-related gene panels were evaluated. Moreover, taking advantage of our STS translational model combining patient-derived primary culture and 3D-scaffold, the pharmacological profile of an adult head and neck sclerosing RMS was assessed. Furthermore, NGS, microsatellite instability, and in silico analyses were carried out. RT-PCR identified the upregulation of CDH1, SLUG, MMP9, RAB22a, S100P, and LAPTM4b, representing promising biomarkers for this disease. Pharmacological profiling showed the highest sensitivity with anthracycline-based regimen in both 2D and 3D culture systems. NGS analysis detected RAB3IP-HMGA2 in frame gene rearrangement and FGFR4 mutation; microsatellite instability analysis did not detect any alteration. In silico analysis confirmed the mutation of FGFR4 as a promising marker for poor prognosis and a potential therapeutic target. We report for the first time the molecular and pharmacological characterization of rare entities of adult head and neck and posterior trunk RMS. These preliminary data could shed light on this poorly understood disease.
Journal Article
Associations between metal constituents of ambient particulate matter and mortality in England: an ecological study
by
Lavigne, Aurore
,
Liverani, Silvia
,
Molitor, John
in
Adult
,
Air Pollutants - adverse effects
,
Air Pollutants - analysis
2019
ObjectivesTo investigate long-term associations between metal components of particulate matter (PM) and mortality and lung cancer incidence.DesignSmall area (ecological) study.SettingPopulation living in all wards (~9000 individuals per ward) in the London and Oxford area of England, comprising 13.6 million individuals.Exposure and outcome measuresWe used land use regression models originally used in the Transport related Air Pollution and Health Impacts—Integrated Methodologies for Assessing Particulate Matter study to estimate exposure to copper, iron and zinc in ambient air PM. We examined associations of metal exposure with Office for National Statistics mortality data from cardiovascular disease (CVD) and respiratory causes and with lung cancer incidence during 2008–2011.ResultsThere were 108 478 CVD deaths, 48 483 respiratory deaths and 24 849 incident cases of lung cancer in the study period and area. Using Poisson regression models adjusted for area-level deprivation, tobacco sales and ethnicity, we found associations between cardiovascular mortality and PM2.5 copper with interdecile range (IDR 2.6–5.7 ng/m3) and IDR relative risk (RR) 1.005 (95%CI 1.001 to 1.009) and between respiratory mortality and PM10 zinc (IDR 1135–153 ng/m3) and IDR RR 1.136 (95%CI 1.010 to 1.277). We did not find relevant associations for lung cancer incidence. Metal elements were highly correlated.ConclusionOur analysis showed small but not fully consistent adverse associations between mortality and particulate metal exposures likely derived from non-tailpipe road traffic emissions (brake and tyre wear), which have previously been associated with increases in inflammatory markers in the blood.
Journal Article
The potential role of the extracellular matrix in the activity of trabectedin in UPS and L-sarcoma: evidences from a patient‐derived primary culture case series in tridimensional and zebrafish models
by
Miserocchi, Giacomo
,
Liverani, Chiara
,
Casadei, Roberto
in
3D scaffold
,
Analysis
,
Anthracyclines
2021
Background
Soft tissue sarcomas (STS) are a rare group of solid neoplasm including among others liposarcoma, leiomyosarcoma (L-sarcoma) and undifferentiated pleomorphic sarcoma (UPS) entities. The current first-line treatment is represented by anthracycline based- regimens, second-line may include trabectedin. Currently the activity of trabectedin and its mechanism of action is not completely elucidated.
Methods
Taking the advantages of our 3D patient-derived primary culture translational model we performed genomic-, chemobiogram, proteomic- and in vivo analysis in a UPS culture (S1). Furthermore pharmacological profiling of a UPS and L-sarcoma patient-derived case series and in silico analysis were carried out.
Results
Trabectedin exhibited an increased activity in 3D respect to 2D cultures suggesting an extracellular matrix (ECM) and timp1 involvement in its mechanism of action. Moreover 3D S1 xenotranspanted zebrafish model showed an increased sensitivity to trabectedin. Finally the results were further validated in a UPS and L-sarcoma case series.
Conclusions
Taken together these results confirmed the activity of trabectedin in these STS histotypes. Moreover the data underline the ECM involvement in the cytotoxic effect mediated by trabectedin and could open the door for researches aimed to focus on the patient setting that could benefit from this agent.
Journal Article
Lineage‐specific mechanisms and drivers of breast cancer chemoresistance revealed by 3D biomimetic culture
by
Liverani, Chiara
,
Miserocchi, Giacomo
,
La Manna, Federico
in
3D models
,
Animal models
,
Animals
2022
To improve the success rate of current preclinical drug trials, there is a growing need for more complex and relevant models that can help predict clinical resistance to anticancer agents. Here, we present a three‐dimensional (3D) technology, based on biomimetic collagen scaffolds, that enables the modeling of the tumor hypoxic state and the prediction of in vivo chemotherapy responses in terms of efficacy, molecular alterations, and emergence of resistance mechanisms. The human breast cancer cell lines MDA‐MB‐231 (triple negative) and MCF‐7 (luminal A) were treated with scaling doses of doxorubicin in monolayer cultures, 3D collagen scaffolds, or orthotopically transplanted murine models. Lineage‐specific resistance mechanisms were revealed by the 3D tumor model. Reduced drug uptake, increased drug efflux, and drug lysosomal confinement were observed in triple‐negative MDA‐MB‐231 cells. In luminal A MCF‐7 cells, the selection of a drug‐resistant subline from parental cells with deregulation of p53 pathways occurred. These cells were demonstrated to be insensitive to DNA damage. Transcriptome analysis was carried out to identify differentially expressed genes (DEGs) in treated cells. DEG evaluation in breast cancer patients demonstrated their potential role as predictive biomarkers. High expression of the transporter associated with antigen processing 1 (TAP1) and the tumor protein p53‐inducible protein 3 (TP53I3) was associated with shorter relapse in patients affected by ER+ breast tumor. Likewise, the same clinical outcome was associated with high expression of the lysosomal‐associated membrane protein 1 LAMP1 in triple‐negative breast cancer. Hypoxia inhibition by resveratrol treatment was found to partially re‐sensitize cells to doxorubicin treatment. Our model might improve preclinical in vitro analysis for the translation of anticancer compounds as it provides: (a) more accurate data on drug efficacy and (b) enhanced understanding of resistance mechanisms and molecular drivers. We present a 3D collagen‐based model used to predict in vivo chemotherapy responses and to reveal lineage‐specific drug resistance mechanisms in breast cancer. After doxorubicin treatment, reduced drug uptake and lysosomal confinement were observed in triple‐negative MDA‐MB‐231 cells whereas a subclone selection with deregulation of p53 pathways and reduced DNA damage response was shown in luminal A MCF‐7 cells.
Journal Article
A Modular Biomimetic Preclinical Platform to Elucidate the Interaction Between Cancer Cells and the Bone Metastatic Niche
by
Gambarotti, Marco
,
Liverani, Chiara
,
Miserocchi, Giacomo
in
Biocompatibility
,
Biomimetic materials
,
Biomimetics
2025
Breast cancer (BC) frequently metastasizes to bone, leading to poor patient prognosis. The infiltration of cancer cells in bone impairs its homeostasis, triggering a pathological interaction between tumors and resident cells. Preclinical models able to mimic the bone microenvironment are needed to advance translational findings on BC mechanisms and treatments. We designed strontium-doped calcium phosphate cement to be employed for culturing cancer and bone cells and developed an in vitro bone metastasis model. The platform was established step by step, starting with the monoculture of cancer cells, mature osteoblasts (OBs) differentiated from mesenchymal stem cells, and mature osteoclasts (OCs) differentiated from Peripheral Blood Mononuclear Cells. The model was implemented with the co-culture of cancer cells with OBs or OCs, or the co-culture of OBs and OCs, allowing us to discriminate the interaction between the actors of the bone metastatic niche. The biomimetic material was further challenged with bone metastasis patient-derived material, showing good versatility and biocompatibility, suggesting its potential use as bone substitute. Overall, we developed a bone-mimicking model able to reproduce reciprocal interactions between cancer and bone cells in a biomimetic environment suitable for studying the biomolecular determinants of bone metastasis and, in the future, as a drug efficacy platform.
Journal Article
Activity and Safety of Immune Checkpoint Inhibitors in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis
by
Grassi, Ilaria
,
Liverani, Chiara
,
Sansovini, Maddalena
in
Bias
,
Chemotherapy
,
immune checkpoint inhibitors
2021
Immune-checkpoint inhibitors (ICIs) have widened the therapeutic scenario of different cancer types. Phase I/II trials have been designed to evaluate the role of ICIs both as single agents and in combination in neuroendocrine neoplasms (NENs), but as yet no randomized controlled phase III trials have been carried out. A systematic review and meta-analysis of studies published could help to reduce the biases of single-phase II trials. Efficacy data were obtained on 636 patients. Pooled percentages of the overall response rate (ORR) and disease control rate (DCR) were 10% (95% CI: 6–15%, I2 = 67%, p < 0.1) and 42% (95% CI: 28–56%, I2 = 93%, p < 0.1), respectively. Median progression-free survival (mPFS) was 4.1 months (95% CI 2.6–5.4; I2 = 96%, p < 0.1) and median overall survival (mOS) was 11 months (95% CI 4.8–21.1; I2 = 98%, p < 0.1). Among the ICIs used as single agents, the anti-PD1 toripalimab achieved the highest ORR. Combination regimens were superior to monotherapy, e.g., the ICI combination nivolumab + ipilimumab, and the ICI + anti-angiogenetic combination atezolizumab + bevacizumab, both of which warrant further investigation. Promising efficacy and a good safety profile of ICIs represent a valid opportunity for expanding the therapeutic landscape of NENs. Predictive biomarkers are needed to identify the most suitable candidates for these regimens.
Journal Article
Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications
by
Lazaridou, Maria
,
Kontonasaki, Eleana
,
Triantafyllidis, Konstantinos S.
in
Antibiotics
,
Bacterial infections
,
Bones
2021
Mesoporous silica-based nanoparticles (MSNs) are considered promising drug carriers because of their ordered pore structure, which permits high drug loading and release capacity. The dissolution of Si and Ca from MSNs can trigger osteogenic differentiation of stem cells towards extracellular matrix calcification, while Mg and Sr constitute key elements of bone biology and metabolism. The aim of this study was the synthesis and characterization of sol–gel-derived MSNs co-doped with Ca, Mg and Sr. Their physico-chemical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), Brunauer Emmett Teller and Brunauer Joyner Halenda (BET/BJH), dynamic light scattering (DLS) and ζ-potential measurements. Moxifloxacin loading and release profiles were assessed with high performance liquid chromatography (HPLC) cell viability on human periodontal ligament fibroblasts and their hemolytic activity in contact with human red blood cells (RBCs) at various concentrations were also investigated. Doped MSNs generally retained their textural characteristics, while different compositions affected particle size, hemolytic activity and moxifloxacin loading/release profiles. All co-doped MSNs revealed the formation of hydroxycarbonate apatite on their surface after immersion in simulated body fluid (SBF) and promoted mitochondrial activity and cell proliferation.
Journal Article