Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
93 result(s) for "Ljungman Mats"
Sort by:
3D genome organization contributes to genome instability at fragile sites
Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer. Common fragile sites are regions susceptible to replication stress and are prone to chromosomal instability. Here, the authors, by analyzing the contribution of 3D chromatin organization, identify and characterize a fragility signature and precisely map these fragility regions.
Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA
Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark. How gene expression reactivation is promoted following DNA damage is not yet clear. Here, the authors identify a role for the human histone chaperone complex HIRA in transcription restart following UV damage independently of its function in new H3.3 histone deposition.
Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing
Significance Alternative splicing of RNA allows a limited number of coding regions in the human genome to produce proteins with diverse functionality. Alternative splicing has also been implicated as an oncogenic process. Identifying aspects of cancer cells that differentiate them from noncancer cells remains an ongoing challenge, and our research suggests that alternatively spliced mRNA and subsequent protein isoforms will provide new anticancer targets. We determined that the key oncoprotein of Ewing sarcoma (ES), EWS-FLI1, regulates alternative splicing in multiple cell line models. These experiments establish oncogenic aspects of splicing that are specific to cancer cells and thereby illuminate potentially oncogenic splicing shifts as well as provide a useful stratification mechanism for ES patients. The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1 , CASP3 , PPFIBP1 , and TERT , validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron–exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4–279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4–279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.
Functional organization of the human 4D Nucleome
The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression. Significance We explored the human genome as a dynamical system. Using a data-guided mathematical framework and genome-wide assays, we interrogated the dynamical relationship between genome architecture (structure) and gene expression (function) and its impact on phenotype, which defines the 4D Nucleome. Structure and function entrained with remarkable persistence in genes that underlie wound healing processes and circadian rhythms. Using genome-wide intragene and intergene contact maps, we identified gene networks with high potential for coregulation and colocalization, consistent with expression via transcription factories. In an intriguing example, we found periodic movements of circadian genes in three dimensions that entrained with expression. This work can be broadly applied to identifying genomic signatures that define critical cell states during differentiation, reprogramming, and cancer.
Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response
Steady-state gene expression is a coordination of synthesis and decay of RNA through epigenetic regulation, transcription factors, micro RNAs (miRNAs), and RNA-binding proteins. Here, we present bromouride labeling and sequencing (Bru-Seq) and bromouridine pulse-chase and sequencing (BruChase-Seq) to assess genome-wide changes to RNA synthesis and stability in human fibroblasts at homeostasis and after exposure to the proinflammatory tumor necrosis factor (TNF). The inflammatory response in human cells involves rapid and dramatic changes in gene expression, and the Bru-Seq and BruChase-Seq techniques revealed a coordinated and complex regulation of gene expression both at the transcriptional and posttranscriptional levels. The combinatory analysis of both RNA synthesis and stability using Bru-Seq and BruChase-Seq allows for a much deeper understanding of mechanisms of gene regulation than afforded by the analysis of steady-state total RNA and should be useful in many biological settings.
HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, decreased PCSC marker expression, and downregulation of POU5F1/OCT4 expression. Conversely, HNF1A overexpression increased PCSC marker expression and tumorsphere formation in pancreatic cancer cells and drove pancreatic ductal adenocarcinoma (PDA) cell growth. Importantly, depletion of HNF1A in xenografts impaired tumor growth and depleted PCSC marker-positive cells in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of PCSC properties and novel oncogene in PDA. Pancreatic ductal adenocarcinoma is the most common form of pancreatic cancer. It is also one of the deadliest types of cancer: fewer than one in ten patients live for five years after being diagnosed with the disease. Several reasons can explain this poor outcome including that the cancer is often diagnosed late, when tumor cells have already spread, and that there are not many effective treatments for it. Pancreatic tumors contain different types of cancer cells with different properties. Among these are the so-called pancreatic cancer stem cells. These aggressive cells produce copies of themselves, contributing to tumor growth and spread. They can also help tumors to resist chemotherapy and radiotherapy. New treatments that specifically target cancer stem cells could therefore prove important for treating pancreatic cancer. It is still not clear what makes pancreatic cancer stem cells so aggressive, or how they differ from the rest of the cells in a tumor. Abel et al. therefore looked for proteins that were more abundant in human pancreatic cancer stem cells than in other, less aggressive cancer cells with the idea that these proteins are likely to be important for the behavior of the pancreatic cancer stem cells. Abel et al. found that a protein called HNF1A is enriched in pancreatic cancer stem cells. Experimentally reducing the levels of HNF1A in cells taken from human pancreatic cancers caused the cells to grow less well and form smaller tumors when injected into the pancreases of mice. These tumors contained few cancer stem cells, suggesting that HNF1A is important for maintaining the stem cell state. Further experiments showed that HNF1A increases the amount of many other proteins inside cells, including one that controls the activity of normal stem cells. Given the importance of HNF1A to pancreatic cancer stem cells, finding ways to prevent this protein from working could lead to new treatments for pancreatic cancer. At the moment there are no drugs that target HNF1A. Further research is therefore needed to develop new drugs that work against HNF1A or one of the other proteins that it affects.
A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair
Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress. The transcription-coupled repair pathway removes transcription-blocking DNA lesions, but how transcription is restored following DNA repair is not clear. Here the authors reveal that the PAF1 complex, while dispensable for the repair process, restores transcription after DNA damage.
ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation
Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.Two side-by-side papers report that the transcription elongation factor ELOF1 drives transcription-coupled repair and prevents replication stress.
A damaged genome’s transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks
Of the many types of DNA damage, DNA double-strand breaks (DSBs) are probably the most deleterious. Mounting evidence points to an intricate relationship between DSBs and transcription. A cell system in which the impact on transcription can be investigated at precisely mapped genomic DSBs is essential to study this relationship. Here in a human cell line, we map genome-wide and at high resolution the DSBs induced by a restriction enzyme, and we characterize their impact on gene expression by four independent approaches by monitoring steady-state RNA levels, rates of RNA synthesis, transcription initiation and RNA polymerase II elongation. We consistently observe transcriptional repression in proximity to DSBs. Downregulation of transcription depends on ATM kinase activity and on the distance from the DSB. Our study couples for the first time, to the best of our knowledge, high-resolution mapping of DSBs with multilayered transcriptomics to dissect the events shaping gene expression after DSB induction at multiple endogenous sites. DNA double strand breaks (DSBs) are among the most deleterious types of damage and there is strong evidence indicating a relationship between breaks and transcription. Here the authors provide a high-resolution, genome-wide map of induced DSBs and observe ATM-dependent transcriptional repression.
Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53
In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells.