Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
88 result(s) for "Llewelyn, Martin J."
Sort by:
Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing
Health-care workers have been implicated in nosocomial outbreaks of Staphylococcus aureus, but the dearth of evidence from non-outbreak situations means that routine health-care worker screening and S aureus eradication are controversial. We aimed to determine how often S aureus is transmitted from health-care workers or the environment to patients in an intensive care unit (ICU) and a high-dependency unit (HDU) where standard infection control measures were in place. In this longitudinal cohort study, we systematically sampled health-care workers, the environment, and patients over 14 months at the ICU and HDU of the Royal Sussex County Hospital, Brighton, England. Nasal swabs were taken from health-care workers every 4 weeks, bed spaces were sampled monthly, and screening swabs were obtained from patients at admission to the ICU or HDU, weekly thereafter, and at discharge. Isolates were cultured and their whole genome sequenced, and we used the threshold of 40 single-nucleotide variants (SNVs) or fewer to define subtypes and infer recent transmission. Between Oct 31, 2011, and Dec 23, 2012, we sampled 198 health-care workers, 40 environmental locations, and 1854 patients; 1819 isolates were sequenced. Median nasal carriage rate of S aureus in health-care workers at 4-weekly timepoints was 36·9% (IQR 35·7–37·3), and 115 (58%) health-care workers had S aureus detected at least once during the study. S aureus was identified in 8–50% of environmental samples. 605 genetically distinct subtypes were identified (median SNV difference 273, IQR 162–399) at a rate of 38 (IQR 34–42) per 4-weekly cycle. Only 25 instances of transmission to patients (seven from health-care workers, two from the environment, and 16 from other patients) were detected. In the presence of standard infection control measures, health-care workers were infrequently sources of transmission to patients. S aureus epidemiology in the ICU and HDU is characterised by continuous ingress of distinct subtypes rather than transmission of genetically related strains. UK Medical Research Council, Wellcome Trust, Biotechnology and Biological Sciences Research Council, UK National Institute for Health Research, and Public Health England.
Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS)
Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these ‘circulating inflammation-related microRNAs’ (CIR-miRNAs) were 2.64 (IQR: 2.10–3.29) and 1.52 (IQR: 1.15–1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742–0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets.
Trends over time in Escherichia coli bloodstream infections, urinary tract infections, and antibiotic susceptibilities in Oxfordshire, UK, 1998–2016: a study of electronic health records
Escherichia coli bloodstream infections are increasing in the UK and internationally. The evidence base to guide interventions against this major public health concern is small. We aimed to investigate possible drivers of changes in the incidence of E coli bloodstream infection and antibiotic susceptibilities in Oxfordshire, UK, over the past two decades, while stratifying for time since hospital exposure. In this observational study, we used all available data on E coli bloodstream infections and E coli urinary tract infections (UTIs) from one UK region (Oxfordshire) using anonymised linked microbiological data and hospital electronic health records from the Infections in Oxfordshire Research Database (IORD). We estimated the incidence of infections across a two decade period and the annual incidence rate ratio (aIRR) in 2016. We modelled the data using negative binomial regression on the basis of microbiological, clinical, and health-care-exposure risk factors. We investigated infection severity, 30-day all-cause mortality, and community and hospital amoxicillin plus clavulanic acid (co-amoxiclav) use to estimate changes in bacterial virulence and the effect of antimicrobial resistance on incidence. From Jan 1, 1998, to Dec 31, 2016, 5706 E coli bloodstream infections occurred in 5215 patients, and 228 376 E coli UTIs occurred in 137 075 patients. 1365 (24%) E coli bloodstream infections were nosocomial (onset >48 h after hospital admission), 1132 (20%) were quasi-nosocomial (≤30 days after discharge), 1346 (24%) were quasi-community (31–365 days after discharge), and 1863 (33%) were community (>365 days after hospital discharge). The overall incidence increased year on year (aIRR 1·06, 95% CI 1·05–1·06). In 2016, 212 (41%) of 515 E coli bloodstream infections and 3921 (28%) of 13 792 E coli UTIs were co-amoxiclav resistant. Increases in E coli bloodstream infections were driven by increases in community (aIRR 1·10, 95% CI 1·07–1·13; p<0·0001) and quasi-community (aIRR 1·08, 1·07–1·10; p<0·0001) cases. 30-day mortality associated with E coli bloodstream infection decreased over time in the nosocomial (adjusted rate ratio [RR] 0·98, 95% CI 0·96–1·00; p=0·03) group, and remained stable in the quasi-nosocomial (adjusted RR 0·98, 0·95–1·00; p=0·06), quasi-community (adjusted RR 0·99, 0·96–1·01; p=0·32), and community (adjusted RR 0·99, 0·96–1·01; p=0·21) groups. Mortality was, however, substantial at 14–25% across all hospital-exposure groups. Co-amoxiclav-resistant E coli bloodstream infections increased in all groups across the study period (by 11–18% per year, significantly faster than co-amoxiclav-susceptible E coli bloodstream infections; pheterogeneity<0·0001), as did co-amoxiclav-resistant E coli UTIs (by 14–29% per year; pheterogeneity<0·0001). Previous year co-amoxiclav use in primary-care facilities was associated with increased subsequent year community co-amoxiclav-resistant E coli UTIs (p=0·003). Increases in E coli bloodstream infections in Oxfordshire are primarily community associated, with substantial co-amoxiclav resistance; nevertheless, we found little or no change in mortality. Focusing interventions on primary care facilities, particularly those with high co-amoxiclav use, could be effective in reducing the incidence of co-amoxiclav-resistant E coli bloodstream infections, in this region and more generally. National Institute for Health Research.
Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: a systematic review and individual patient level meta-analysis
Background Accurate biomarkers to diagnose infection are lacking. Studies reported good performance of pancreatic stone protein (PSP) to detect infection. The objective of the study was to determine the performance of PSP in diagnosing infection across hospitalized patients and calculate a threshold value for that purpose. Methods A systematic search across Cochrane Central Register of Controlled Trials and MEDLINE databases (1966–March 2019) for studies on PSP published in English using ‘pancreatic stone protein’, ‘PSP’, ‘regenerative protein’, ‘lithostatin’ combined with ‘infection’ and ‘sepsis’ found 44 records. The search was restricted to the five trials that evaluated PSP for the initial detection of infection in hospitalized adults. Individual patient data were obtained from the investigators of all eligible trials. Data quality and validity was assessed according to PRISMA guidelines. We choose a fixed-effect model to calculate the PSP cut-off value that best discriminates infected from non-infected patients. Results Infection was confirmed in 371 of 631 patients. The median (IQR) PSP value of infected versus uninfected patients was 81.5 (30.0–237.5) versus 19.2 (12.6–33.57) ng/ml, compared to 150 (82.70–229.55) versus 58.25 (15.85–120) mg/l for C-reactive protein (CRP) and 0.9 (0.29–4.4) versus 0.15 (0.08–0.5) ng/ml for procalcitonin (PCT). Using a PSP cut-off of 44.18 ng/ml, the ROC AUC to detect infection was 0.81 (0.78–0.85) with a sensitivity of 0.66 (0.61–0.71), specificity of 0.83 (0.78–0.88), PPV of 0.85 (0.81–0.89) and NPV of 0.63 (0.58–0.68). When a model combining PSP and CRP was used, the ROC AUC improved to 0.90 (0.87–0.92) with higher sensitivity 0.81 (0.77–0.85) and specificity 0.84 (0.79–0.90) for discriminating infection from non-infection. Adding PCT did not improve the performance further. Conclusions PSP is a promising biomarker to diagnose infections in hospitalized patients. Using a cut-off value of 44.18 ng/ml, PSP performs better than CRP or PCT across the considered studies. The combination of PSP with CRP further enhances its accuracy.
Clinical management of Staphylococcus aureus bacteraemia
Staphylococcus aureus bacteraemia is one of the most common serious bacterial infections worldwide. In the UK alone, around 12 500 cases each year are reported, with an associated mortality of about 30%, yet the evidence guiding optimum management is poor. To date, fewer than 1500 patients with S aureus bacteraemia have been recruited to 16 controlled trials of antimicrobial therapy. Consequently, clinical practice is driven by the results of observational studies and anecdote. Here, we propose and review ten unanswered clinical questions commonly posed by those managing S aureus bacteraemia. Our findings define the major areas of uncertainty in the management of S aureus bacteraemia and highlight just two key principles. First, all infective foci must be identified and removed as soon as possible. Second, long-term antimicrobial therapy is required for those with persistent bacteraemia or a deep, irremovable focus. Beyond this, the best drugs, dose, mode of delivery, and duration of therapy are uncertain, a situation compounded by emerging S aureus strains that are resistant to old and new antibiotics. We discuss the consequences on clinical practice, and how these findings define the agenda for future clinical research.
Endothelial and inflammatory pathophysiology in dengue shock: New insights from a prospective cohort study in Vietnam
Dengue shock (DS) is the most severe complication of dengue infection; endothelial hyperpermeability leads to profound plasma leakage, hypovolaemia and extravascular fluid accumulation. At present, the only treatment is supportive with intravenous fluid, but targeted endothelial stabilising therapies and host immune modulators are needed. With the aim of prioritising potential therapeutics, we conducted a prospective observational study of adults (≥16 years) with DS in Vietnam from 2019–2022, comparing the pathophysiology underlying circulatory failure with patients with septic shock (SS), and investigating the association of biomarkers with clinical severity (SOFA score, ICU admission, mortality) and pulmonary vascular leak (daily lung ultrasound for interstitial and pleural fluid). Plasma was collected at enrolment, 48 hours later and hospital discharge. We measured biomarkers of inflammation (IL-6, ferritin), endothelial activation (Ang-1, Ang-2, sTie-2, VCAM-1) and endothelial glycocalyx breakdown (hyaluronan, heparan sulfate, endocan, syndecan-1). We enrolled 135 patients with DS (median age 26, median SOFA score 7, 34 required ICU admission, 5 deaths), together with 37 patients with SS and 25 healthy controls. Within the DS group, IL-6 and ferritin were associated with admission SOFA score (IL-6: βeta0.70, p<0.001 & ferritin: βeta0.45, p<0.001), ICU admission (IL-6: OR 2.6, p<0.001 & ferritin: OR 1.55, p<0.001) and mortality (IL-6: OR 4.49, p = 0.005 & ferritin: OR 13.8, p = 0.02); both biomarkers discriminated survivors and non-survivors at 48 hours and all patients who died from DS had pre-mortem ferritin ≥100,000ng/ml. IL-6 most strongly correlated with severity of pulmonary vascular leakage (R = 0.41, p<0.001). Ang-2 correlated with pulmonary vascular leak (R = 0.33, p<0.001) and associated with SOFA score (β 0.81, p<0.001) and mortality (OR 8.06, p = 0.002). Ang-1 was associated with ICU admission (OR 1.6, p = 0.005) and mortality (OR 3.62, p = 0.006). All 4 glycocalyx biomarkers were positively associated with SOFA score, but only syndecan-1 was associated with ICU admission (OR 2.02, p<0.001) and mortality (OR 6.51, p<0.001). This study highlights the central role of hyperinflammation in determining outcomes from DS; the data suggest that anti-IL-1 and anti-IL-6 immune modulators and Tie2 agonists may be considered as candidates for therapeutic trials in severe dengue.
Microbial diversity and antimicrobial resistance in faecal samples from acute medical patients assessed through metagenomic sequencing
Antimicrobial resistance (AMR) is a threat to global public health. However, unsatisfactory approaches to directly measuring the AMR burden carried by individuals has hampered efforts to assess interventions aimed at reducing selection for AMR. Metagenomics can provide accurate detection and quantification of AMR genes within an individual person’s faecal flora (their gut “resistome”). Using this approach, we aimed to test the hypothesis that differences in antimicrobial use across different hospitals in the United Kingdom will result in observable differences in the resistome of individual patients. Three National Health Service acute Hospital Trusts with markedly different antibiotic use and Clostridioides difficile infection rates collected faecal samples from anonymous patients which were discarded after C . difficile testing over a period of 9 to 15 months. Metagenomic DNA was extracted from these samples and sequenced using an Illumina NovaSeq 6000 platform. The resulting sequencing reads were analysed for taxonomic composition and for the presence of AMR genes. Among 683 faecal metagenomes we found huge variation between individuals in terms of taxonomic diversity (Shannon Index range 0.10–3.99) and carriage of AMR genes (Median 1.50 genes/cell/sample overall). We found no statistically significant differences in diversity (median Shannon index 2.16 (IQR 1.71–2.56), 2.15 (IQR 1.62–2.50) and 2.26 (IQR 1.55–2.51)) or carriage of AMR genes (median 1.37 genes/cell/sample (IQR 0.70–3.24), 1.70 (IQR 0.70–4.52) and 1.43 (IQR 0.55–3.71)) at the three trusts respectively. This was also the case across the sample collection period within the trusts. While we have not demonstrated differences over place or time using metagenomic sequencing of faecal discards, other sampling frameworks may be more suitable to determine whether organisational level differences in antibiotic use are associated with individual-level differences in burden of AMR carriage.
Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs
The systemic inflammatory response syndrome (SIRS) is a potentially lethal response triggered by diverse forms of tissue injury and infection. When systemic inflammation is triggered by infection, the term sepsis is used. Understanding how inflammation is mediated and regulated is of enormous medical importance. We previously demonstrated that circulating inflammatory-relevant microRNAs (CIR-miRNAs) are candidate biomarkers for differentiating sepsis from SIRS. Here, we set out to determine how CIR-miRNA levels reflect SIRS severity and whether they derive from activated immune cells. Clinical disease severity scores and markers of red blood cell (RBC) damage or immune cell activation were correlated with CIR-miRNA levels in patients with SIRS and sepsis. The release of CIR-miRNAs modulated during SIRS was assessed in immune cell cultures. We show that severity of non-infective SIRS, but not sepsis is reflected in the levels of miR-378a-3p, miR-30a-5p, miR-30d-5p, and miR-192-5p. These CIR-miRNA levels positively correlate with levels of the redox biomarker, peroxiredoxin-1 (Prdx-1), which has previously been shown to be released by immune cells during inflammation. Furthermore, activated immune cells produce SIRS-associated miR-378a-3p, miR-30a-5p, miR-30d-5p, and miR-192-5p. Our study furthers the understanding of the origin, role, and trafficking of CIR-miRNAs as potential regulators of inflammation.
Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care
Our objective was to assess the clinical effectiveness of shorter versus longer duration antibiotics for treatment of bacterial infections in adults and children in secondary care settings, using the evidence from published systematic reviews. We conducted electronic searches in MEDLINE, Embase, Cochrane, and Cinahl. Our primary outcome was clinical resolution. The quality of included reviews was assessed using the AMSTAR criteria, and the quality of the evidence was rated using the GRADE criteria. We included 6 systematic reviews (n = 3,162). Four reviews were rated high quality, and two of moderate quality. In adults, there was no difference between shorter versus longer duration in clinical resolution rates for peritonitis (RR 1.03, 95% CI 0.98 to 1.09, I2 = 0%), ventilator-associated pneumonia (RR 0.93; 95% CI 0.81 to 1.08, I2 = 24%), or acute pyelonephritis and septic UTI (clinical failure: RR 1.00, 95% CI 0.46 to 2.18). The quality of the evidence was very low to moderate. In children, there was no difference in clinical resolution rates for pneumonia (RR 0.98, 95% CI 0.91 to 1.04, I2 = 48%), pyelonephritis (RR 0.95, 95% CI 0.88 to 1.04) and confirmed bacterial meningitis (RR 1.02, 95% CI 0.93 to 1.11, I2 = 0%). The quality of the evidence was low to moderate. In conclusion, there is currently a limited body of evidence to clearly assess the clinical benefits of shorter versus longer duration antibiotics in secondary care. High quality trials assessing strategies to shorten antibiotic treatment duration for bacterial infections in secondary care settings should now be a priority.
Mathematical modelling for antibiotic resistance control policy: do we know enough?
Background Antibiotics remain the cornerstone of modern medicine. Yet there exists an inherent dilemma in their use: we are able to prevent harm by administering antibiotic treatment as necessary to both humans and animals, but we must be mindful of limiting the spread of resistance and safeguarding the efficacy of antibiotics for current and future generations. Policies that strike the right balance must be informed by a transparent rationale that relies on a robust evidence base. Main text One way to generate the evidence base needed to inform policies for managing antibiotic resistance is by using mathematical models. These models can distil the key drivers of the dynamics of resistance transmission from complex infection and evolutionary processes, as well as predict likely responses to policy change in silico. Here, we ask whether we know enough about antibiotic resistance for mathematical modelling to robustly and effectively inform policy. We consider in turn the challenges associated with capturing antibiotic resistance evolution using mathematical models, and with translating mathematical modelling evidence into policy. Conclusions We suggest that in spite of promising advances, we lack a complete understanding of key principles. From this we advocate for priority areas of future empirical and theoretical research.