Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
355 result(s) for "Lloyd, Amy"
Sort by:
The pro-remyelination properties of microglia in the central nervous system
Microglia are resident macrophages of the CNS that are involved in its development, homeostasis and response to infection and damage. Microglial activation is a common feature of neurological disorders, and although in some instances this activation can be damaging, protective and regenerative functions of microglia have been revealed. The most prominent example of the regenerative functions is a role for microglia in supporting regeneration of myelin after injury, a process that is critical for axonal health and relevant to numerous disorders in which loss of myelin integrity is a prevalent feature, such as multiple sclerosis, Alzheimer disease and motor neuron disease. Although drugs that are intended to promote remyelination are entering clinical trials, the mechanisms by which remyelination is controlled and how microglia are involved are not completely understood. In this Review, we discuss work that has identified novel regulators of microglial activation — including molecular drivers, population heterogeneity and turnover — that might influence their pro-remyelination capacity. We also discuss therapeutic targeting of microglia as a potential approach to promoting remyelination.
The proteomic landscape of microglia in health and disease
Microglia are the resident immune cells of the central nervous system (CNS) and as such play crucial roles in regulating brain homeostasis. Their presence in neurodegenerative diseases is known, with neurodegeneration-associated risk genes heavily expressed in microglia, highlighting their importance in contributing to disease pathogenesis. Transcriptomics studies have uncovered the heterogeneous landscape of microglia in health and disease, identifying important disease-associated signatures such as DAM, and insight into both the regional and temporal diversity of microglia phenotypes. Quantitative mass spectrometry methods are ever increasing in the field of neurodegeneration, utilised as ways to identify disease biomarkers and to gain deeper understanding of disease pathology. Proteins are the main mechanistic indicators of cellular function, yet discordance between transcript and proteomic findings has highlighted the need for in-depth proteomic phenotypic and functional analysis to fully understand disease kinetics at the cellular and molecular level. This review details the current progress of using proteomics to define microglia biology, the relationship between gene and protein expression in microglia, and the future of proteomics and emerging methods aiming to resolve heterogeneous cell landscapes.
Astrocyte-oligodendrocyte interaction regulates central nervous system regeneration
Failed regeneration of myelin around neuronal axons following central nervous system damage contributes to nerve dysfunction and clinical decline in various neurological conditions, for which there is an unmet therapeutic demand. Here, we show that interaction between glial cells – astrocytes and mature myelin-forming oligodendrocytes – is a determinant of remyelination. Using in vivo/ ex vivo/ in vitro rodent models, unbiased RNA sequencing, functional manipulation, and human brain lesion analyses, we discover that astrocytes support the survival of regenerating oligodendrocytes, via downregulation of the Nrf2 pathway associated with increased astrocytic cholesterol biosynthesis pathway activation. Remyelination fails following sustained astrocytic Nrf2 activation in focally-lesioned male mice yet is restored by either cholesterol biosynthesis/efflux stimulation, or Nrf2 inhibition using the existing therapeutic Luteolin. We identify that astrocyte-oligodendrocyte interaction regulates remyelination, and reveal a drug strategy for central nervous system regeneration centred on targeting this interaction. The mechanisms regulating central nervous system remyelination efficiency are poorly understood. Here, the authors show that remyelination is driven by astrocytes supporting oligodendrocyte survival, regulated by the Nrf2 and cholesterol pathways.
Central nervous system regeneration is driven by microglia necroptosis and repopulation
Failed regeneration of CNS myelin contributes to clinical decline in neuroinflammatory and neurodegenerative diseases, for which there is an unmet therapeutic need. Here we reveal that efficient remyelination requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state. We propose that impaired microglia death and/or repopulation may underpin dysregulated microglia activation in neurological diseases, and we reveal therapeutic targets to promote white matter regeneration.Lloyd et al. find that regeneration of CNS myelin requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state, revealing new therapeutic targets for neurodegenerative disease.
Shared Decision Making: A Model for Clinical Practice
The principles of shared decision making are well documented but there is a lack of guidance about how to accomplish the approach in routine clinical practice. Our aim here is to translate existing conceptual descriptions into a three-step model that is practical, easy to remember, and can act as a guide to skill development. Achieving shared decision making depends on building a good relationship in the clinical encounter so that information is shared and patients are supported to deliberate and express their preferences and views during the decision making process. To accomplish these tasks, we propose a model of how to do shared decision making that is based on choice, option and decision talk . The model has three steps: a) introducing choice, b) describing options, often by integrating the use of patient decision support, and c) helping patients explore preferences and make decisions. This model rests on supporting a process of deliberation, and on understanding that decisions should be influenced by exploring and respecting “what matters most” to patients as individuals, and that this exploration in turn depends on them developing informed preferences.
A three-talk model for shared decision making: multistage consultation process
Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement.Design Multistage consultation process.Setting Key informant group, communities of interest, and survey of clinical specialties.Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties.Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on “team talk,” “option talk,” and “decision talk,” to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals.Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences.
17α-Ethinyl estradiol-3-sulfate increases survival and hemodynamic functioning in a large animal model of combined traumatic brain injury and hemorrhagic shock: a randomized control trial
Background Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) represent leading causes of trauma-induced mortality, especially when co-occurring in pre-hospital settings where standard therapies are not readily available. The primary objective of this study was to determine if 17α-ethinyl estradiol-3-sulfate (EE-3-SO 4 ) increases survival, promotes more rapid cardiovascular recovery, or confers neuroprotection relative to Placebo following TBI + HS. Methods All methods were approved by required regulatory agencies prior to study initiation. In this fully randomized, blinded preclinical study, eighty (50% females) sexually mature (190.64 ± 21.04 days old; 28.18 ± 2.72 kg) Yucatan swine were used. Sixty-eight animals received a closed-head, accelerative TBI followed by removal of approximately 40% of circulating blood volume. Animals were then intravenously administered EE-3-SO 4 formulated in the vehicle at 5.0 mg/mL (dosed at 0.2 mL/kg) or Placebo (0.45% sodium chloride solution) via a continuous pump (0.2 mL/kg over 5 min). Twelve swine were included as uninjured Shams to further characterize model pathology and replicate previous findings. All animals were monitored for up to 5 h in the absence of any other life-saving measures (e.g., mechanical ventilation, fluid resuscitation). Results A comparison of Placebo-treated relative to Sham animals indicated evidence of acidosis, decreased arterial pressure, increased heart rate, diffuse axonal injury and blood–brain barrier breach. The percentage of animals surviving to 295 min post-injury was significantly higher for the EE-3-SO 4 (28/31; 90.3%) relative to Placebo (24/33; 72.7%) cohort. EE-3-SO 4 also restored pulse pressure more rapidly post-drug administration, but did not confer any benefits in terms of shock index. Primary blood-based measurements of neuroinflammation and blood brain breach were also null, whereas secondary measurements of diffuse axonal injury suggested a more rapid return to baseline for the EE-3-SO 4 group. Survival status was associated with biological sex (female > male), as well as evidence of increased acidosis and neurotrauma independent of EE-3-SO 4 or Placebo administration. Conclusions EE-3-SO 4 is efficacious in promoting survival and more rapidly restoring cardiovascular homeostasis following polytraumatic injuries in pre-hospital environments (rural and military) in the absence of standard therapies. Poly-therapeutic approaches targeting additional mechanisms (increased hemostasis, oxygen-carrying capacity, etc.) should be considered in future studies.
Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia
Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. At diagnosis, the developmental timing of mutations contributing critically to clonal diversification and selection can be buried in the leukemia's covert natural history. Concordance of ALL in monozygotic, monochorionic twins is a consequence of intraplacental spread of an initiated preleukemic clone. Studying monozygotic twins with ALL provides a unique means of uncovering the timeline of mutations contributing to clonal evolution, pre- and postnatally. We sequenced the whole genomes of leukemic cells from two twin pairs with ALL to comprehensively characterize acquired somatic mutations in ALL, elucidating the developmental timing of all genetic lesions. Shared, prenatal, coding-region single-nucleotide variants were limited to the putative initiating lesions. All other nonsynonymous single-nucleotide variants were distinct between tumors and, therefore, secondary and postnatal. These changes occurred in a background of noncoding mutational changes that were almost entirely discordant in twin pairs and likely passenger mutations acquired during leukemic cell proliferation.
Ability of observer and self-report measures to capture shared decision-making in clinical practice in the UK: a mixed-methods study
ObjectivesTo examine how observer and self-report measures of shared decision-making (SDM) evaluate the decision-making activities that patients and clinicians undertake in routine consultations.DesignMulti-method study using observational and self-reported measures of SDM and qualitative analysis.SettingBreast care and predialysis teams who had already implemented SDM.ParticipantsBreast care consultants, clinical nurse specialists and patients who were making decisions about treatment for early-stage breast cancer. Predialysis clinical nurse specialists and patients who needed to make dialysis treatment decisions.MethodsConsultations were audio recorded, transcribed and thematically analysed. SDM was measured using Observer OPTION-5 and a dyadic SureScore self-reported measure.ResultsTwenty-two breast and 21 renal consultations were analysed. SureScore indicated that clinicians and patients felt SDM was occurring, but scores showed ceiling effects for most participants, making differentiation difficult. There was mismatch between SureScore and OPTION-5 score data, the latter showing that each consultation lacked at least some elements of SDM. Highest scoring items using OPTION-5 were ‘incorporating patient preferences into decisions’ for the breast team (mean 18.5, range 12.5–20, SD 2.39) and ‘eliciting patient preferences to options’ for the renal team (mean 16.15, range 10–20, SD 3.48). Thematic analysis identified that the SDM encounter is difficult to measure because decision-making is often distributed across encounters and time, with multiple people, it is contextually adapted and can involve multiple decisions.ConclusionsSelf-reported measures can broadly indicate satisfaction with SDM, but do not tell us about the quality of the interaction and are unlikely to capture the multi-staged nature of the SDM process. Observational measures provide an indication of the extent to which elements of SDM are present in the observed consultation, but cannot explain why some elements might not be present or scored lower. Findings are important when considering measuring SDM in practice.
Development, implementation and evaluation of an evidence-based paediatric early warning system improvement programme: the PUMA mixed methods study
Background Paediatric mortality rates in the United Kingdom are amongst the highest in Europe. Clinically missed deterioration is a contributory factor. Evidence to support any single intervention to address this problem is limited, but a cumulative body of research highlights the need for a systems approach. Methods An evidence-based, theoretically informed, paediatric early warning system improvement programme (PUMA Programme) was developed and implemented in two general hospitals (no onsite Paediatric Intensive Care Unit) and two tertiary hospitals (with onsite Paediatric Intensive Care Unit) in the United Kingdom. Designed to harness local expertise to implement contextually appropriate improvement initiatives, the PUMA Programme includes a propositional model of a paediatric early warning system, system assessment tools, guidance to support improvement initiatives and structured facilitation and support. Each hospital was evaluated using interrupted time series and qualitative case studies. The primary quantitative outcome was a composite metric (adverse events), representing the number of children monthly that experienced one of the following: mortality, cardiac arrest, respiratory arrest, unplanned admission to Paediatric Intensive Care Unit, or unplanned admission to Higher Dependency Unit. System changes were assessed qualitatively through observations of clinical practice and interviews with staff and parents. A qualitative evaluation of implementation processes was undertaken. Results All sites assessed their paediatric early warning systems and identified areas for improvement. All made contextually appropriate system changes, despite implementation challenges. There was a decline in the adverse event rate trend in three sites; in one site where system wide changes were organisationally supported, the decline was significant (ß = -0.09 (95% CI: − 0.15, − 0.05); p  = < 0.001). Changes in trends coincided with implementation of site-specific changes. Conclusions System level change to improve paediatric early warning systems can bring about positive impacts on clinical outcomes, but in paediatric practice, where the patient population is smaller and clinical outcomes event rates are low, alternative outcome measures are required to support research and quality improvement beyond large specialist centres, and methodological work on rare events is indicated. With investment in the development of alternative outcome measures and methodologies, programmes like PUMA could improve mortality and morbidity in paediatrics and other patient populations.