Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
161 result(s) for "Lo, Chun-Yu"
Sort by:
Investigating brain–gut microbiota dynamics and inflammatory processes in an autistic-like rat model using MRI biomarkers during childhood and adolescence
•Reduced microbiota diversity emphasized the early interventions targeting gut dysbiosis in ASD.•Dysregulation in SCFA metabolism potentially impacts ASD-related behaviors.•Elevated astrocytic, microglial activation, and proinflammatory cytokines in ASD.•The potential of DTI metrics as imaging-based biomarkers for ASD. Autism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear. We hypothesized that ASD-related brain microstructural changes and gut dysbiosis induce metabolic dysregulation and proinflammatory responses, which collectively contribute to the social behavioral deficits observed in early childhood. We used an autistic-like rat model that was generated via prenatal valproic acid exposure. We analyzed brain microstructural changes using diffusion tensor imaging (DTI) and examined microbiota, blood, and fecal samples for inflammation biomarkers. The ASD model rats exhibited significant brain microstructural changes in the anterior cingulate cortex, hippocampus, striatum, and thalamus; reduced microbiota diversity (Prevotellaceae and Peptostreptococcaceae); and altered metabolic signatures. The shift in microbiota diversity and density observed at postnatal day (PND) 35, which is a critical developmental period, underscored the importance of early ASD interventions. We identified a unique metabolic signature in the ASD model, with elevated formate and reduced acetate and butyrate levels, indicating a dysregulation in short-chain fatty acid (SCFA) metabolism. Furthermore, increased astrocytic and microglial activation and elevated proinflammatory cytokines—interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)—were observed, indicating immune dysregulation. This study provided insights into the complex interplay between the brain and the gut, and indicated DTI metrics as potential imaging-based biomarkers in ASD, thus emphasizing the need for early childhood interventions.
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits. Traumatic brain injury can cause long-term disability and thus constitutes a substantial healthcare burden worldwide. Here, the authors report a conductive microporous hydrogel to improve angiogenesis and recovery of brain function in traumatic brain lesions.
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine––CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.In addition to neuroinflammatory functions, chemokine CCL5 shows strong neurotrophic properties. In this study, we found that CCL5 facilitates hippocampal glucoregulatory efficiency. CCL5 promotes aerobic glucose metabolism, mitochondrial ATP generation and purine synthesis, improving synaptic plasticity and enhancing memory and cognition functions.
Kinetics and morphologies of syndiotactic polystyrene crystallized isothermally over a wide temperature range
Time-resolved Fourier transform infrared (FTIR) spectroscopy was used to investigate the crystallization kinetics of syndiotactic polystyrene (sPS) for the first time, and the results were compared with those obtained with differential scanning calorimetry (DSC) and depolarized light scattering (DPLS). Isothermal crystallization either from the melt by cooling or from the glass by heating was used to determine the temperature (Tc) dependence of the crystallization rate (k). The derived values of k were in good agreement with the results obtained with other tools over the accessible Tc ranges 250−262 °C and 110−135 °C for melt and cold crystallization, respectively. Based on the derived k and the crystal growth rates obtained from DPLS and optical microscopy (OM), the density of primary nucleation was readily calculated. The magnitudes of the nucleation densities in the cold-crystallized samples were ~5−6 orders higher than those of the melt-crystallized samples despite the similar k values. The novelty of our work lies in revealing that the volume-filling spherulites of the cold-crystallized sPS had modulated structure, reminiscent of spinodal decomposition. Thus, the nucleation pathway for cold crystallization is relevant to spinodal-assisted nucleation, which significantly enhances the nucleation density.Time-resolved FTIR was used to study the crystallization kinetics of syndiotactic polystyrene. Isothermal crystallization from the melt by cooling and from the glass by heating was used to determine the temperature (Tc) dependence of the crystallization rate (k). Based on the derived k and the crystal growth rates (G) obtained from OM and depolarized light scattering, the density of primary nucleation was readily calculated. The magnitudes of the nucleation densities in the cold-crystallized samples were ~5−6 orders higher than those of the melt-crystallized samples despite the similar k values.
Diffusion kurtosis imaging biomarkers associated with amelioration of neuroinflammation, gray matter microstructural abnormalities, and gut dysbiosis by central thalamic deep brain stimulation in autistic -like young rats
•CTN-DBS treatment demonstrated thermal safety by meeting SAR-induced RF heating standards, ensuring no adverse heating effects.•Precise activation of CTN was confirmed through VTA analysis, highlighting its targeted therapeutic impact.•CTN-DBS significantly improved grey matter microstructure, with increased MK, AK, and RK, reflecting enhanced neuronal complexity.•Neuroinflammation was attenuated, with reduced astrocyte, microglial activation and decreased systemic pro-inflammatory cytokines, improving gut barrier integrity and mitigating dysbiosis.•DKI was validated as a robust biomarker, linking CTN-DBS-induced microstructural improvements to behavioral and gut health benefits. Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by abnormalities in brain microstructure, neuroinflammation, and social behavior deficits. In addition, children with ASD frequently exhibit irritable bowel syndrome and other gastrointestinal symptoms linked to anxiety. This study investigated if central thalamic nucleus deep brain stimulation (CTN-DBS) can improve social behavior, suppress neuroinflammation, restore brain microstructure, and reverse gut dysbiosis in the valproic acid-induced rat model of ASD by modulating the microbiota–gut–brain (MGB) axis. Daily CTN-DBS for 7 days (30 min/day) enhanced neuronal density, organization, and microstructural complexity as evidenced by increases in the diffusion kurtosis imaging (DKI) metrics—mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK). These neurostructural improvements were associated with reduced astrocyte and microglial activation, two core hallmarks of neuroinflammation in ASD, and lower systemic levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, signaling factors that may increase gut permeability and disrupt gut microbial composition. Indeed, CTN-DBS enhanced gut barrier function, promoted the proliferation of beneficial Bacteroides spp., and improved short-chain fatty acid (SCFA) metabolism, thereby restoring normal gut acetate and butyrate levels and counteracting dysbiosis. Specific energy absorption rate and thermal effect analyses demonstrated that CTN-DBS is safe under DKI. These findings support CTN-DBS as a safe and efficacious therapeutic strategy to reduce neuroinflammation, restore gray matter circuit function, and improve gut microbial composition in ASD via MGB axis modulation. Furthermore, DKI can reveal neurobiomarkers indicative of these improvements in ASD model rats.
Cigarette smoke-induced dysbiosis: comparative analysis of lung and intestinal microbiomes in COPD mice and patients
Background The impact of cigarette smoke (CS) on lung diseases and the role of microbiome dysbiosis in chronic obstructive pulmonary disease (COPD) have been previously reported; however, the relationships remain unclear. Methods Our research examined the effects of 20-week cigarette smoke (CS) exposure on the lung and intestinal microbiomes in C57BL/6JNarl mice, alongside a comparison with COPD patients’ intestinal microbiome data from a public dataset. Results The study found that CS exposure significantly decreased forced vital capacity (FVC), thickened airway walls, and induced emphysema. Increased lung damage was observed along with higher lung keratinocyte chemoattractant (KC) levels by CS exposure. Lung microbiome analysis revealed a rise in Actinobacteriota, while intestinal microbiome showed significant diversity changes, indicating dysbiosis. Principal coordinate analysis highlighted distinct intestinal microbiome compositions between control and CS-exposed groups. In the intestinal microbiome, notable decreases in Patescibacteria, Campilobacterota, Defferibacterota, Actinobacteriota, and Desulfobacterota were observed. We also identified correlations between lung function and dysbiosis in both lung and intestinal microbiomes. Lung interleukins, interferon-ɣ, KC, and 8-isoprostane levels were linked to lung microbiome dysbiosis. Notably, dysbiosis patterns in CS-exposed mice were similar to those in COPD patients, particularly of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 patients. This suggests a systemic impact of CS exposure. Conclusion In summary, CS exposure induces significant dysbiosis in lung and intestinal microbiomes, correlating with lung function decline and injury. These results align with changes in COPD patients, underscoring the important role of microbiome in smoke-related lung diseases.
Increased Interleukin-17 and Glucocorticoid Receptor-β Expression in Interstitial Lung Diseases and Corticosteroid Insensitivity
Treatment responsiveness to corticosteroids is excellent for cryptogenic organizing pneumonia (COP) and sarcoidosis, but suboptimal for idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP). We hypothesise that the differential expression of IL-17 contributes to variable corticosteroid sensitivity in different interstitial lung diseases. To determine the associations among expression of IL-17, glucocorticoid receptor-β and responsiveness to corticosteroid treatment in interstitial lung diseases. Immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded (FFPE) lung tissues obtained by bronchoscopic, CT-guided or surgical biopsies, and quantified by both cell counting (% positive cells) by individuals and by software IHC Profiler plugin of ImageJ (opacity density score). We studied the effect of IL-17 on corticosteroid sensitivity in human fibroblast MRC5 cell line. Compared with specimens from patients with COP (n =13) and sarcoidosis (n =13), those from IPF patients (n = 21) had greater GR-β and IL-17 expression and neutrophil infiltration. Radiographic progression after oral corticosteroid treatment was positively correlated with the expression in IL-17 and GR-β/GR-α ratio in all patients (COP, sarcoidosis and IPF) and also within the IPF subgroup only. IL-17 expression level was positively associated with GR-β and GR-β/GR-α ratio. In MRC5 cells, exogenous IL-17 increased the production of collagen I and up-regulated GR-β expression and dexamethasone's suppressive effect on collagen I production was impaired by IL-17, and silencing IL-17 receptor A gene attenuated the effect of IL-17. Up-regulation of GR-β/GR-α ratio by IL-17 could be associated with the relative corticosteroid-insensitivity of IPF.
A Data-Driven Model with Feedback Calibration Embedded Blood Pressure Estimator Using Reflective Photoplethysmography
Ambulatory blood pressure (BP) monitoring (ABPM) is vital for screening cardiovascular activity. The American College of Cardiology/American Heart Association guideline for the prevention, detection, evaluation, and management of BP in adults recommends measuring BP outside the office setting using daytime ABPM. The recommendation to use night–day BP measurements to confirm hypertension is consistent with the recommendation of several other guidelines. In recent studies, ABPM was used to measure BP at regular intervals, and it reduces the effect of the environment on BP. Out-of-office measurements are highly recommended by almost all hypertension organizations. However, traditional ABPM devices based on the oscillometric technique usually interrupt sleep. For all-day ABPM purposes, a photoplethysmography (PPG)-based wrist-type device has been developed as a convenient tool. This optical, noninvasive device estimates BP using morphological characteristics from PPG waveforms. As measurement can be affected by multiple variables, calibration is necessary to ensure that the calculated BP values are accurate. However, few studies focused on adaptive calibration. A novel adaptive calibration model, which is data-driven and embedded in a wearable device, was proposed. The features from a 15 s PPG waveform and personal information were input for estimation of BP values and our data-driven calibration model. The model had a feedback calibration process using the exponential Gaussian process regression method to calibrate BP values and avoid inter- and intra-subject variability, ensuring accuracy in long-term ABPM. The estimation error of BP (ΔBP = actual BP—estimated BP) of systolic BP was −0.1776 ± 4.7361 mmHg; ≤15 mmHg, 99.225%, and of diastolic BP was −0.3846 ± 6.3688 mmHg; ≤15 mmHg, 98.191%. The success rate was improved, and the results corresponded to the Association for the Advancement of Medical Instrumentation standard and British Hypertension Society Grading criteria for medical regulation. Using machine learning with a feedback calibration model could be used to assess ABPM for clinical purposes.
Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats
Background Effects of air pollution on neurotoxicity and behavioral alterations have been reported. The objective of this study was to investigate the pathophysiology caused by particulate matter (PM) in the brain. We examined the effects of traffic-related particulate matter with an aerodynamic diameter of < 1 μm (PM 1 ), high-efficiency particulate air (HEPA)-filtered air, and clean air on the brain structure, behavioral changes, brainwaves, and bioreactivity of the brain (cortex, cerebellum, and hippocampus), olfactory bulb, and serum after 3 and 6 months of whole-body exposure in 6-month-old Sprague Dawley rats. Results The rats were exposed to 16.3 ± 8.2 (4.7~ 68.8) μg/m 3 of PM 1 during the study period. An MRI analysis showed that whole-brain and hippocampal volumes increased with 3 and 6 months of PM 1 exposure. A short-term memory deficiency occurred with 3 months of exposure to PM 1 as determined by a novel object recognition (NOR) task, but there were no significant changes in motor functions. There were no changes in frequency bands or multiscale entropy of brainwaves. Exposure to 3 months of PM 1 increased 8-isoporstance in the cortex, cerebellum, and hippocampus as well as hippocampal inflammation (interleukin (IL)-6), but not in the olfactory bulb. Systemic CCL11 (at 3 and 6 months) and IL-4 (at 6 months) increased after PM 1 exposure. Light chain 3 (LC3) expression increased in the hippocampus after 6 months of exposure. Spongiosis and neuronal shrinkage were observed in the cortex, cerebellum, and hippocampus (neuronal shrinkage) after exposure to air pollution. Additionally, microabscesses were observed in the cortex after 6 months of PM 1 exposure. Conclusions Our study first observed cerebral edema and brain impairment in adult rats after chronic exposure to traffic-related air pollution.
Altered white matter tract property related to impaired focused attention, sustained attention, cognitive impulsivity and vigilance in attention-deficit/hyperactivity disorder
The neural substrate for clinical symptoms and neuropsychological performance in individuals with attention-deficit/hyperactivity disorder (ADHD) has rarely been studied and has yielded inconsistent results. We sought to compare the microstructural property of fibre tracts associated with the prefrontal cortex and its association with ADHD symptoms and a wide range of attention performance in youth with ADHD and healthy controls. We assessed youths with ADHD and age-, sex-, handedness-, coil- and intelligence-matched controls using the Conners’ Continuous Performance Test (CCPT) for attention performance and MRI. The 10 target tracts, including the bilateral frontostriatal tracts (caudate to dorsolateral prefrontal cortex, ventrolateral prefrontal cortex and orbitofrontal cortex), superior longitudinal fasciculus (SLF) and cingulum bundle were reconstructed using diffusion spectrum imaging tractography. We computed generalized fractional anisotropy (GFA) values to indicate tract-specific microstructural property. We included 50 youths with ADHD and 50 healthy controls in our study. Youths with ADHD had lower GFA in the left frontostriatal tracts, bilateral SLF and right cingulum bundle and performed worse in the CCPT than controls. Furthermore, alteration of the right SLF GFA was most significantly associated with the clinical symptom of inattention in youths with ADHD. Finally, youths with ADHD had differential association patterns of the 10 fibre tract GFA values with attention performance compared with controls. Ten of the youths with ADHD were treated with methylphenidate, which may have long-term effects on microstructural property. Our study highlights the importance of the SLF, cingulum bundle and frontostriatal tracts for clinical symptoms and attention performance in youths with ADHD and demonstrates the involvement of different fibre tracts in attention performance in these individuals.