Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,887 result(s) for "Long, Hui"
Sort by:
Multilayered PdSe2/Perovskite Schottky Junction for Fast, Self‐Powered, Polarization‐Sensitive, Broadband Photodetectors, and Image Sensor Application
Group‐10 transition metal dichalcogenides (TMDs) with distinct optical and tunable electrical properties have exhibited great potential for various optoelectronic applications. Herein, a self‐powered photodetector is developed with broadband response ranging from deep ultraviolet to near‐infrared by combining FA1−xCsxPbI3 perovskite with PdSe2 layer, a newly discovered TMDs material. Optoelectronic characterization reveals that the as‐assembled PdSe2/perovskite Schottky junction is sensitive to light illumination ranging from 200 to 1550 nm, with the highest sensitivity centered at ≈800 nm. The device also shows a large on/off ratio of ≈104, a high responsivity (R) of 313 mA W−1, a decent specific detectivity (D*) of ≈1013 Jones, and a rapid response speed of 3.5/4 µs. These figures of merit are comparable with or much better than most of the previously reported perovskite detectors. In addition, the PdSe2/perovskite device exhibits obvious sensitivity to polarized light, with a polarization sensitivity of 6.04. Finally, the PdSe2/perovskite detector can readily record five “P,” “O,” “L,” “Y,” and “U” images sequentially produced by 808 nm. These results suggest that the present PdSe2/perovskite Schottky junction photodetectors may be useful for assembly of optoelectronic system applications in near future. A large‐area, highly polarization‐sensitive and broadband photodetector based on multilayered PdSe2/perovskite device is demonstrated. From optoelectronic characterization, the device achieves an impressive specific detectivity of ≈1013 Jones, a polarization sensitivity as high as 6.04, and a fast response speed of 3.5/4 µs. Further study reveals that the present device is potentially important for image sensor applications.
System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System X c − ), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System X c − /GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System X c − /GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System X c − /GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Enantioselective total syntheses of (+)-stemofoline and three congeners based on a biogenetic hypothesis
The powerful insecticidal and multi-drug-resistance-reversing activities displayed by the stemofoline group of alkaloids render them promising lead structures for further development as commercial agents in agriculture and medicine. However, concise, enantioselective total syntheses of stemofoline alkaloids remain a formidable challenge due to their structural complexity. We disclose herein the enantioselective total syntheses of four stemofoline alkaloids, including (+)-stemofoline, (+)-isostemofoline, (+)-stemoburkilline, and (+)-(11 S ,12 R )-dihydrostemofoline, in just 19 steps. Our strategy relies on a biogenetic hypothesis, which postulates that stemoburkilline and dihydrostemofolines are biogenetic precursors of stemofoline and isostemofoline. Other highlights of our approach are the use of Horner–Wadsworth–Emmons reaction to connect the two segments of the molecule, an improved protocol allowing gram-scale access to the tetracyclic cage-type core, and a Cu-catalyzed direct and versatile nucleophilic alkylation reaction on an anti-Bredt iminium ion. The synthetic techniques that we developed could also be extended to the preparation of other Stemona alkaloids. Stemofoline alkaloids are promising lead structures for further development in the fields of agriculture and medicine. Here, the authors report the enantioselective total syntheses of four stemofoline alkaloids in 19 steps based on a biogenetic hypothesis.
PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS
Summary Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS®. Based on 99 085 high‐quality SNPs, landraces were classified into three sub‐populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour‐joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait‐associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub‐populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.
Identification of key genes and long non‑coding RNA expression profiles in osteoporosis with rheumatoid arthritis based on bioinformatics analysis
Background Although rheumatoid arthritis (RA) is a chronic systemic tissue disease often accompanied by osteoporosis (OP), the molecular mechanisms underlying this association remain unclear. This study aimed to elucidate the pathogenesis of RA and OP by identifying differentially expressed mRNAs (DEmRNAs) and long non-coding RNAs (lncRNAs) using a bioinformatics approach. Methods Expression profiles of individuals diagnosed with OP and RA were retrieved from the Gene Expression Omnibus database. Differential expression analysis was conducted. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway enrichment analyses were performed to gain insights into the functional categories and molecular/biochemical pathways associated with DEmRNAs. We identified the intersection of common DEmRNAs and lncRNAs and constructed a protein-protein interaction (PPI) network. Correlation analysis between the common DEmRNAs and lncRNAs facilitated the construction of a coding-non-coding network. Lastly, serum peripheral blood mononuclear cells (PBMCs) from patients with RA and OP, as well as healthy controls, were obtained for TRAP staining and qRT-PCR to validate the findings obtained from the online dataset assessments. Results A total of 28 DEmRNAs and 2 DElncRNAs were identified in individuals with both RA and OP. Chromosomal distribution analysis of the consensus DEmRNAs revealed that chromosome 1 had the highest number of differential expression genes. GO and KEGG analyses indicated that these DEmRNAs were primarily associated with \" platelets (PLTs) degranulation”, “platelet alpha granules”, “platelet activation”, “tight junctions” and “leukocyte transendothelial migration”, with many genes functionally related to PLTs. In the PPI network, MT-ATP6 and PTGS1 emerged as potential hub genes, with MT-ATP6 originating from mitochondrial DNA. Co-expression analysis identified two key lncRNA-mRNA pairs: RP11 − 815J21.2 with MT − ATP6 and RP11 − 815J21.2 with PTGS1. Experimental validation confirmed significant differential expression of RP11-815J21.2, MT-ATP6 and PTGS1 between the healthy controls and the RA + OP groups. Notably, knockdown of RP11-815J21.2 attenuated TNF + IL-6-induced osteoclastogenesis. Conclusions This study successfully identified shared dysregulated genes and potential therapeutic targets in individuals with RA and OP, highlighting their molecular similarities. These findings provide new insights into the pathogenesis of RA and OP and suggest potential avenues for further research and targeted therapies.
A review on material fracture mechanism in incremental sheet forming
In incremental sheet forming (ISF), including single point incremental forming (SPIF) and double side incremental forming (DSIF), the material formability can be significantly enhanced when compared with conventional sheet forming processes. The material deformation in ISF is far more complicated because of the combined material deformation under stretching, bending, shearing, and cyclic loading, with an additional effect of compression in DSIF. Despite extensive investigation on material deformation during ISF, no theory has yet been widely agreed to explain different types of the material fracture behavior observed in ISF experiments. This paper presents a comprehensive review on the formability enhancement in ISF and proposes possible fracture mechanisms explaining the different types of fracture behavior observed in the experimental investigations. Discussions are presented to outline the current research progress and possible solutions to overcome the current ISF process limitations because of the material processing failure due to fracture.
Decreased salivary α-amylase activity responding to citric acid stimulation in Myasthenia gravis with malnutrition
Malnutrition, defined according to Nutritional risk screening (NRS 2002), is commonly observed in patients of Myasthenia gravis (MG), a neuromuscular disorder manifested by varied degrees of skeletal muscle weakness. Because biochemical composition of saliva changes in correspondence to alterations in nutritional status, we tested our hypothesis that a certain saliva component(s) might serve as a biomarker(s) for nutrition status of MG, particularly for those MG patients with high risk of malnutrition. 60 MG patients and 60 subjects belonging to the healthy control group (HCG) were enrolled in this case-control study. The salivary α-amylase (sAA) activity, salivary flow rate (SFR), pH, total protein density (TPD), and the concentrations of chloride and calcium ions in MG group with or without malnutrition were measured before and after citric acid stimulation. Thereafter, the relationship between sAA activity and BMI was determined in MG and HCG. Compared with HCG, more patients with malnutrition, increased TPD and chloride and calcium concentrations but decreased pH value and SFR both before and after acid stimulation, as well as reduced sAA activity, pH and TPD responses to acid stimulation. MG with malnutrition showed decreased sAA activity and TPD responding to acid stimulation compared with those without malnutrition. Compared with normal BMI, sAA activity response to acid stimulation was reduced in low BMI. There was a significant strong positive correlation between the ratio of sAA activity and BMI in MG. Salivary biochemical characteristics are abnormally altered in MG with malnutrition. Altered sAA activity responding to acid stimulation was associated with malnutrition. Decreased sAA activity responding to acid stimulation can reflect malnutrition state and may be one potential screening marker for MG patients with high risk of malnutrition.
Sound Touch Elastography for Noninvasive Assessment of Liver Stiffness in Patients With Chronic Heart Failure
Heart failure (HF) can damage various organs, including the liver, a phenomenon known as “cardiohepatic syndrome.” The latter is characterized by liver congestion and hepatic artery hypoperfusion, which can lead to liver damage. In this study, we aimed to assess liver damage quantitatively in chronic HF (CHF) with sound touch elastography (STE). A total of 150 subjects were enrolled, including HF with reduced ejection fraction (HFrEF) groups (left ventricular ejection fraction ≤40%, n = 45), HF with mildly reduced ejection fraction (HFmrEF) groups (left ventricular ejection fraction between 41% and 49%, n = 40), and right-sided HF (RHF) groups (n = 25); normal groups (n = 40). Liver stiffness measurement (LSM) was performed in all subjects by STE. The other hepatic parameters were also measured. The LSM was 5.4 ± 1.1 kPa in normal subjects and increased slightly to 5.9 ± 0.7 kPa in patients with HFmrEF. However, the HFrEF and RHF groups had significantly higher LSMs of 8.4 ± 2.0 kPa and 10.3 ± 2.7 kPa, respectively. The LSM of HFrEF was significantly higher than that of HFmrEF, whereas the increase in LSM in patients with RHF was significant relative to HFmrEF and HFrEF. In addition, the other parameters showed abnormal values in only RHF and HFrEF. In conclusion, STE is a useful clinical technique for the noninvasive evaluation of liver stiffness associated with CHF, which could help patients with CHF manage their treatment regimens.
Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatography-tandem mass spectrometry
The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry. The ricin in beverages was captured and enriched by biotinylated anti-ricin polyclonal antibodies conjugated to streptavidin magnetic beads. The purified ricin was cleaved using the developed trypsin/Glu-C tandem digestion method and then quantitatively detected by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with isotope-labeled T7A and TG11B selected as IS. The use of trypsin/Glu-C digestion allows shorter peptides, which are more suitable for MS detection, to be obtained than the use of single trypsin digestion. Under the optimized tandem digestion condition, except for T7A in the A-chain, two resulting specific peptides of TG13A, TG28A from the A-chain and two of TG11B, TG33B from the B-chain were chosen as novel marker peptides with high MS response. The uniqueness of the selected marker peptides allows for unambiguous identification of ricin among its homologous proteins in a single run. The MS response of the four novel marker peptides is increased by more than 10 times compared with that of individual corresponding tryptic peptides. Both the marker peptides of A-chain T7A and B-chain TG11B were selected as quantitative peptides based on the highest MS response among the marker peptides from their individual chains. The limit of detection (LOD) of ricin is 0.1 ng/mL in PBS and 0.5 ng/mL in either milk or orange juice. The linear range of calibration curves for ricin were 0.5–300 ng/mL in PBS, 1.0–400 ng/mL in milk, and 1.0–250 ng/mL in orange juice. The method accuracy ranged between 82.6 and 101.8% for PBS, 88.9–105.2% for milk, and 95.3–118.7% for orange juice. The intra-day and inter-day precision had relative standard deviations (%RSD) of 0.3–9.4%, 0.7–8.9%, and 0.2–6.9% in the three matrices respectively. Furthermore, whether T7A or TG11B is used as a quantitative peptide, the quantitative results of ricin are consistent. This study provides not only a practical method for the absolute quantification of ricin in beverage matrices but also a new strategy for the investigation of illegal use of ricin in chemical weapon verification tasks such as OPCW biotoxin sample analysis exercises.