Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
102 result(s) for "Longhi, Luca"
Sort by:
Long-lasting protection in brain trauma by endotoxin preconditioning
We investigated the occurrence of endotoxin (lipopolysaccharide, LPS) preconditioning in traumatic brain injury (TBI), evaluating the time window of LPS-induced protection, its persistence, and the associated molecular mechanisms. Mice received 0.1 mg/kg LPS or saline intraperitoneally and subsequently TBI (by controlled cortical impact brain injury) at various time intervals. Mice receiving LPS 3, 5, or 7 days before TBI showed attenuated motor deficits at 1 week after injury compared with mice receiving saline. Those receiving LPS 5 days before injury had also a reduced contusion volume (7.9 ± 1.3 versus 12 ± 2.3 mm3) and decreased cell death. One month after injury, the protective effect of LPS on contusion volume (14.5 ± 1.2 versus 18.2 ± 1.2 mm3) and neurologic function was still present. Traumatic brain injury increased glial fibrillary acidic protein, CD11b, CD68, tumor necrosis factor-α, interleukin (IL)-10, and IL-6 mRNA expression 24 hours after injury. Lipopolysaccharide administered 5 (but not 9) days before injury increased the expression of CD11b (233%) and of interferon β (500%) in uninjured mice, while it reduced the expression of CD68 (by 46%) and increased that of IL-6 (by 52%) in injured mice. Lipopolysaccharide preconditioning conferred a long-lasting neuroprotection after TBI, which was associated with a modulation of microglia/macrophages activity and cytokine production.
Tumor Necrosis Factor in Traumatic Brain Injury: Effects of Genetic Deletion of p55 or p75 Receptor
The role of tumor necrosis factor (TNF) and its receptors after traumatic brain injury (TBI) remains unclear. We evaluated the effects of genetic deletion of either p55 or p75 TNF receptor on neurobehavioral outcome, histopathology, DNA damage and apoptosis-related cell death/survival gene expression (bcl-2/bax), and microglia/macrophage (M/M) activation in wild-type (WT) and knockout mice after TBI. Injured p55 (– / –) mice showed a significant attenuation while p75 (– / –) mice showed a significant worsening of sensorimotor deficits compared with WT mice over 4 weeks postinjury. At the same time point, contusion volume in p55 (– / –) mice (11.1 ± 3.3 mm3) was significantly reduced compared with WT (19.7 ± 3.4 mm3) and p75 (– / –) mice (20.9 ± 3.2 mm3). At 4 hours postinjury, bcl-2/bax ratio mRNA expression was increased in p55 (– / –) compared with p75 (– / –) mice and was associated with reduced DNA damage terminal deoxynucleotidyl transferaseYmediated dUTP nick end labeling (TUNEL-positivity), reduced CD11b expression and increased Ym1 expression at 24 hours postinjury in p55 (– / –) compared with p75 (– / –) mice, indicative of a protective M/M response. These data suggest that TNF may exacerbate neurobehavioral deficits and tissue damage via p55 TNF receptor whose inhibition may represent a specific therapeutic target after TBI.
Characterization of compliance phenotypes in COVID-19 acute respiratory distress syndrome
Background Coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) seems to differ from the “classic ARDS”, showing initial significant hypoxemia in the face of relatively preserved compliance and evolving later in a scenario of poorly compliant lungs. We tested the hypothesis that in patients with COVID-19 ARDS, the initial value of static compliance of respiratory system (Crs) (1) depends on the previous duration of the disease (i.e., the fewer days of illness, the higher the Crs and vice versa) and (2) identifies different lung patterns of time evolution and response to prone positioning. Methods This was a single-center prospective observational study. We enrolled consecutive mechanically ventilated patients with a diagnosis of COVID-19 who met ARDS criteria, admitted to intensive care unit (ICU). Patients were divided in four groups based on quartiles of initial Crs. Relationship between Crs and the previous duration of the disease was evaluated. Respiratory parameters collected once a day and during prone positioning were compared between groups. Results We evaluated 110 mechanically ventilated patients with a diagnosis of COVID-19 who met ARDS criteria admitted to our ICUs. Patients were divided in groups based on quartiles of initial Crs. The median initial Crs was 41 (32–47) ml/cmH 2 O. No association was found between the previous duration of the disease and the initial Crs. The Crs did not change significantly over time within each quartile. Positive end-expiratory pressure (PEEP) and driving pressure were respectively lower and greater in patients with lower Crs. Prone positioning significantly improved PaO 2 /FiO 2 in the 4 groups, however it increased the Crs significantly only in patients in lower quartile of Crs. Conclusions In our cohort, the initial Crs is not dependent on the previous duration of COVID-19 disease. Prone positioning improves oxygenation irrespective to initial Crs, but it ameliorates respiratory mechanics only in patients with lower Crs.
Time Course of Intracranial Hypertension after Traumatic Brain Injury
High intracranial pressure (HICP) may be a very early event after traumatic brain injury (TBI), but in most cases, especially when contusions and edema develop over time, HICP will worsen over succeeding days. This study describes the incidence and severity of elevated intracranial pressure (ICP) after TBI and attempts to document its time course. In this prospective study, 201 TBI patients in whom ICP was monitored for more than 12 h were evaluated. ICP was measured, digitalized, and analyzed after manual filtering. The number of episodes of HICP and the mean ICP value for every 12-h interval were calculated. When monitoring was concluded, the highest mean ICP collected in every patient was identified. A total of 21,000 h of ICP monitoring were recorded. Active treatment to prevent or reduce HICP was used in 200 patients. HICP was documented in 155 cases. Half of the patients had their highest mean ICP during the first 3 days after injury, but many showed delayed ICP elevation, with 25% showing highest mean ICP after day 5. In these cases, HICP was significantly worse and required more intense therapies.
Early management of patients with aneurysmal subarachnoid hemorrhage in a hospital without neurosurgical/neuroendovascular facilities: a consensus and clinical recommendations of the Italian Society of Anesthesia and Intensive Care (SIAARTI)
BackgroundThe immediate management of subarachnoid hemorrhage (SAH) patients in hospitals without neurosurgical/neurointerventional facilities and their transfer to a specialized center is challenging and not well covered in existing guidelines. To address these issues, we created a consensus of experts endorsed by the Italian Society of Anesthesia and Intensive Care (SIAARTI) to provide clinical guidance.MethodsA multidisciplinary consensus panel composed by 19 physicians selected for their established clinical and scientific expertise in the acute management of SAH patients with different specializations (anesthesia/intensive care, neurosurgery and interventional neuroradiology) was created. A modified Delphi approach was adopted.ResultsA total of 14 statements have been discussed. Consensus was reached on 11 strong recommendations and 2 weak recommendations. In one case, where consensus could not be agreed upon, no recommendation could be provided.ConclusionsManagement of SAH in a non-specialized setting and early transfer are difficult and may have a critical impact on outcome. Clinical advice, based on multidisciplinary consensus, might be helpful. Our recommendations cover most, but not all, topics of clinical relevance.
MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms
Background and objective Despite olfactory disorders being among the most common neurological complications of coronavirus disease 2019 (COVID-19), their pathogenesis has not been fully elucidated yet. Brain MR imaging is a consolidated method for evaluating olfactory system’s morphological modification, but a few quantitative studies have been published so far. The aim of the study was to provide MRI evidence of olfactory system alterations in patients with COVID-19 and neurological symptoms, including olfactory dysfunction. Methods 196 COVID-19 patients (median age: 53 years, 56% females) and 39 controls (median age 55 years, 49% females) were included in this cross-sectional observational study; 78 of the patients reported olfactory loss as the only neurological symptom. MRI processing was performed by ad-hoc semi-automatic processing procedures. Olfactory bulb (OB) volume was measured on T2-weighted MRI based on manual tracing and normalized to the brain volume. Olfactory tract (OT) median signal intensity was quantified on fluid attenuated inversion recovery (FLAIR) sequences, after preliminary intensity normalization. Results COVID-19 patients showed significantly lower left, right and total OB volumes than controls ( p  < 0.05). Age-related OB atrophy was found in the control but not in the patient population. No significant difference was found between patients with olfactory disorders and other neurological symptoms. Several outliers with abnormally high OT FLAIR signal intensity were found in the patient group. Conclusions Brain MRI findings demonstrated OB damage in COVID-19 patients with neurological complications. Future longitudinal studies are needed to clarify the transient or permanent nature of OB atrophy in COVID-19 pathology. Graphical abstract
Cerebral autoregulation in traumatic brain injury: ultra-low-frequency pressure reactivity index and intracranial pressure across age groups
Background The ultra-low-frequency pressure reactivity index (UL-PRx) has been established as a surrogate method for bedside estimation of cerebral autoregulation (CA). Although this index has been shown to be a predictor of outcome in adult and pediatric patients with traumatic brain injury (TBI), a comprehensive evaluation of low sampling rate data collection (0.0033 Hz averaged over 5 min) on cerebrovascular reactivity has never been performed. Objective To evaluate the performance and predictive power of the UL-PRx for 12-month outcome measures, alongside all International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) models and in different age groups. To investigate the potential for optimal cerebral perfusion pressure (CPPopt). Methods Demographic data, IMPACT variables, in-hospital mortality, and Glasgow Outcome Scale Extended (GOSE) at 12 months were extracted. Filtering and processing of the time series and creation of the indices (cerebral intracranial pressure (ICP), cerebral perfusion pressure (CPP), UL-PRx, and deltaCPPopt (ΔCPPopt and CPPopt-CPP)) were performed using an in-house algorithm. Physiological parameters were assessed as follows: mean index value, % time above threshold, and mean hourly dose above threshold. Results A total of 263 TBI patients were included: pediatric (17.5% aged ≤ 16 y) and adult (60.5% aged > 16 and < 70 y and 22.0% ≥ 70 y, respectively) patients. In-hospital and 12-month mortality were 25.9% and 32.7%, respectively, and 60.0% of patients had an unfavorable outcome at 12 months (GOSE). On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month outcomes. The cutoff of ~ 20–22 for mean ICP and of ~ 0.30 for mean UL-PRx were confirmed in all age groups, except in patients older than 70 years. Mean UL-PRx remained significantly associated with 12-month outcomes even after adjustment for IMPACT models. This association was confirmed in all age groups. UL-PRx resulted associate with CPPopt. Conclusions The study highlights UL-PRx as a tool for assessing CA and valuable outcome predictor for TBI patients. The results emphasize the potential clinical utility of the UL-PRx and its adaptability across different age groups, even after adjustment for IMPACT models. Furthermore, the correlation between UL-PRx and CPPopt suggests the potential for more targeted treatment strategies. Trial registration : ClinicalTrials.gov identifier: NCT05043545, principal investigator Paolo Gritti, date of registration 2021.08.21.
Genetically Modified NT2N Human Neuronal Cells Mediate Long-Term Gene Expression as CNS Grafts In Vivo and Improve Functional Cognitive Outcome Following Experimental Traumatic Brain Injury
Human Ntera-2 (NT2) cells can be differentiated in vitro into well-characterized populations of NT2N neurons that engraft and mature when transplanted into the adult CNS of rodents and humans. They have shown promise as treatments for neurologic disease, trauma, and ischemic stroke. Although these features suggest that NT2N neurons would be an excellent platform for ex vivo gene therapy in the CNS, stable gene expression has been surprisingly difficult to achieve in these cells. In this report we demonstrate stable, efficient, and nontoxic gene transfer into undifferentiated NT2 cells using a pseudotyped lentiviral vector encoding the human elongation factor 1-α promoter and the reporter gene eGFP. Expression of eGFP was maintained when the NT2 cells were differentiated into NT2N neurons after treatment with retinoic acid. When transplanted into the striatum of adult nude mice, transduced NT2N neurons survived, engrafted, and continued to express the reporter gene for long-term time points in vivo. Furthermore, transplantation of NT2N neurons genetically modified to express nerve growth factor significantly attenuated cognitive dysfunction following traumatic brain injury in mice. These results demonstrate that defined populations of genetically modified human NT2N neurons are a practical and effective platform for stable ex vivo gene delivery into the CNS.
Transition to a Greener Fashion: How and why Main Brands Are Moving Towards a More Sustainable Business?
The fashion industry has long been identified as a main driver of systemicenvironmental damage. Especially for so-called “fast fashion” giants that operate on a strategic model based on both overproduction and overconsumption. As environmental concerns become ever more relevant in public discourse, several key corporate players have taken steps to reduce their environmental impact and make their supply chains more sustainable.In order to investigate on this matter, we readapt existing research frameworks to measure the economic and sustainability performance, and their correlation, of eight-company sample selected among the great fast-fashion “giants” and evaluate their commitment to sustainability issues.