Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
108
result(s) for
"Longjiang Fan"
Sort by:
Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in Echinochloa colona
by
Pan, Lang
,
Han, Heping
,
Nyporko, Alex
in
Aldo-Keto Reductases - chemistry
,
Aldo-Keto Reductases - genetics
,
Aldo-Keto Reductases - metabolism
2019
Glyphosate, the most commonly used herbicide in the world, controls a wide range of plant species, mainly because plants have little capacity to metabolize (detoxify) glyphosate. Massive glyphosate use has led to world-wide evolution of glyphosate-resistant (GR) weed species, including the economically damaging grass weed Echinochloa colona. An Australian population of E. colona has evolved resistance to glyphosate with unknown mechanisms that do not involve the glyphosate target enzyme 5-enolpyruvylshikimate-3-P synthase. GR and glyphosate-susceptible (S) lines were isolated from this population and used for resistance gene discovery. RNA sequencing analysis and phenotype/genotype validation experiments revealed that one aldo-keto reductase (AKR) contig had higher expression and higher resultant AKR activity in GR than S plants. Two full-length AKR (EcAKR4-1 and EcAKR4-2) complementary DNA transcripts were cloned with identical sequences between the GR and S plants but were upregulated in the GR plants. Rice (Oryza sativa) calli and seedlings overexpressing EcAKR4-1 and displaying increased AKR activity were resistant to glyphosate. EcAKR4-1 expressed in Escherichia coli can metabolize glyphosate to produce aminomethylphosphonic acid and glyoxylate. Consistent with these results, GR E. colona plants exhibited enhanced capacity for detoxifying glyphosate into aminomethylphosphonic acid and glyoxylate. Structural modeling predicted that glyphosate binds to EcAKR4-1 for oxidation, and metabolomics analysis of EcAKR4-1 transgenic rice seedlings revealed possible redox pathways involved in glyphosate metabolism. Our study provides direct experimental evidence of the evolution of a plant AKR that metabolizes glyphosate and thereby confers glyphosate resistance.
Journal Article
Genomic insights into the evolution of Echinochloa species as weed and orphan crop
2022
As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echi- nochloa species have been domesticated and cultivated as millets. In order to better under- stand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative geno- mic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echi- nochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
Journal Article
Widespread noncoding circular RNAs in plants
2015
A large number of noncoding circular RNAs (circRNAs) with regulatory potency have been identified in animals, but little attention has been given to plant circRNAs.
We performed genome-wide identification of circRNAs in Oryza sativa and Arabidopsis thaliana using publically available RNA-Seq data, analyzed and compared features of plant and animal circRNAs.
circRNAs (12037 and 6012) were identified in Oryza sativa and Arabidopsis thaliana, respectively, with 56% (10/18) of the sampled rice exonic circRNAs validated experimentally. Parent genes of over 700 exonic circRNAs were orthologues between rice and Arabidopsis, suggesting conservation of circRNAs in plants. The introns flanking plant circRNAs were much longer than introns from linear genes, and possessed less repetitive elements and reverse complementary sequences than the flanking introns of animal circRNAs. Plant circRNAs showed diverse expression patterns, and 27 rice exonic circRNAs were found to be differentially expressed under phosphate-sufficient and -starvation conditions. A significantly positive correlation was observed for the expression profiles of some circRNAs and their parent genes.
Our results demonstrated that circRNAs are widespread in plants, revealed the common and distinct features of circRNAs between plants and animals, and suggested that circRNAs could be a critical class of noncoding regulators in plants.
Journal Article
A syntelog-based pan-genome provides insights into rice domestication and de-domestication
2023
Background
Asian rice is one of the world’s most widely cultivated crops. Large-scale resequencing analyses have been undertaken to explore the domestication and de-domestication genomic history of Asian rice, but the evolution of rice is still under debate.
Results
Here, we construct a syntelog-based rice pan-genome by integrating and merging 74 high-accuracy genomes based on long-read sequencing, encompassing all ecotypes and taxa of
Oryza sativa
and
Oryza rufipogon
. Analyses of syntelog groups illustrate subspecies divergence in gene presence-and-absence and haplotype composition and identify massive genomic regions putatively introgressed from ancient Geng/
japonica
to ancient Xian/
indica
or its wild ancestor, including almost all well-known domestication genes and a 4.5-Mbp centromere-spanning block, supporting a single domestication event in main rice subspecies. Genomic comparisons between weedy and cultivated rice highlight the contribution from wild introgression to the emergence of de-domestication syndromes in weedy rice.
Conclusions
This work highlights the significance of inter-taxa introgression in shaping diversification and divergence in rice evolution and provides an exploratory attempt by utilizing the advantages of pan-genomes in evolutionary studies.
Journal Article
miR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton
2013
In this study, we characterized the miR482 family in cotton using existing small RNA datasets and the recently released draft genome sequence of Gossypium raimondii, a diploid cotton species whose progenitor is the putative contributor of the Dt (representing the D genome of tetraploid) genome of the cultivated tetraploid cotton species G. hirsutum and G. barbadense. Of the three ghr-miR482 members reported in G. hirsutum, ghr-miR482a has no homolog in G. raimondii, ghr-miR482b and ghr-miR482c each has a single homolog in G. raimondii. Gra-miR482d has five homologous loci (gra-miR482d, f-i) in G. raimondii and also exists in G. hirsutum (ghr-miR482d). A variant, miR482.2 that is a homolog of miR2118 in other species, is produced from several GHR-MIR482 loci in G. hirsutum. Approximately 12% of the G. raimondii NBS-LRR genes were predicted targets of various members of the gra-miR482 family. Based on the rationale that the regulatory relationship between miR482 and NBS-LRR genes will be conserved in G. raimondii and G. hirsutum, we investigated this relationship using G. hirsutum miR482 and G. raimondii NBS-LRR genes, which are not currently available in G. hirsutum. Ghr-miR482/miR482.2-mediated cleavage was confirmed for three of the four NBS-LRR genes analysed. As in tomato, miR482-mediated cleavage of NBS-LRR genes triggered production of phased secondary small RNAs in cotton. In seedlings of the susceptible cultivar Sicot71 (G. hirsutum) infected with the fungal pathogen Verticillium dahliae, the expression levels of ghr-miR482b/miR482b.2, ghr-miR482c and ghr-miR482d.2 were down-regulated, and several NBS-LRR targets of ghr-miR482c and ghr-miR482d were up-regulated. These results imply that, like tomato plants infected with viruses or bacteria, cotton plants are able to induce expression of NBS-LRR defence genes by suppression of the miRNA-mediated gene silencing pathway upon fungal pathogen attack.
Journal Article
High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq
2023
Formalin-fixed paraffin-embedded (FFPE) tissues constitute a vast and valuable patient material bank for clinical history and follow-up data. It is still challenging to achieve single cell/nucleus RNA (sc/snRNA) profile in FFPE tissues. Here, we develop a droplet-based snRNA sequencing technology (snRandom-seq) for FFPE tissues by capturing full-length total RNAs with random primers. snRandom-seq shows a minor doublet rate (0.3%), a much higher RNA coverage, and detects more non-coding RNAs and nascent RNAs, compared with state-of-art high-throughput scRNA-seq technologies. snRandom-seq detects a median of >3000 genes per nucleus and identifies 25 typical cell types. Moreover, we apply snRandom-seq on a clinical FFPE human liver cancer specimen and reveal an interesting subpopulation of nuclei with high proliferative activity. Our method provides a powerful snRNA-seq platform for clinical FFPE specimens and promises enormous applications in biomedical research.
Formalin-fixed paraffin-embedded (FFPE) tissues constitute a vast and valuable patient material bank, but single nucleus RNAseq using such tissues is challenging. Here the authors develop a droplet-based method called snRandom-seq for high-throughput and sensitive single nucleus RNA-seq of FFPE samples.
Journal Article
Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants
2020
Momilactones are bioactive diterpenoids that contribute to plant defense against pathogens and allelopathic interactions between plants. Both cultivated and wild grass species of Oryza and Echinochloa crus-galli (barnyard grass) produce momilactones using a biosynthetic gene cluster (BGC) in their genomes. The bryophyte Calohypnum plumiforme (formerly Hypnum plumaeforme) also produces momilactones, and the bifunctional diterpene cyclase gene CpDTC1/HpDTC1, which is responsible for the production of the diterpene framework, has been characterized. To understand the molecular architecture of the momilactone biosynthetic genes in the moss genome and their evolutionary relationships with other momilactone-producing plants, we sequenced and annotated the C. plumiforme genome. The data revealed a 150-kb genomic region that contains two cytochrome P450 genes, the CpDTC1/HpDTC1 gene and the “dehydrogenase momilactone A synthase” gene tandemly arranged and inductively transcribed following stress exposure. The predicted enzymatic functions in yeast and recombinant assay and the successful pathway reconstitution in Nicotiana benthamiana suggest that it is a functional BGC responsible for momilactone production. Furthermore, in a survey of genomic sequences of a broad range of plant species, we found that momilactone BGC is limited to the two grasses (Oryza and Echinochloa) and C. plumiforme, with no synteny among these genomes. These results indicate that while the gene cluster in C. plumiforme is functionally similar to that in rice and barnyard grass, it is likely a product of convergent evolution. To the best of our knowledge, this report of a BGC for a specialized plant defense metabolite in bryophytes is unique.
Journal Article
Genomic variation associated with local adaptation of weedy rice during de-domestication
2017
De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like’ forms. Weedy rice (
Oryza sativa f. spontanea
) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to
japonica
and
indica
weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication.
De-domestication is the process by which cultivated plants adopt characteristics similar to that of their wild predecessors. Here Qiu
et al
. re-sequence de-domesticated weedy rice and matched cultivated varieties and identify genetic variants indicative of convergent evolution across multiple de-domestication events.
Journal Article
Diverse genetic mechanisms underlie worldwide convergent rice feralization
2020
Background
Worldwide feralization of crop species into agricultural weeds threatens global food security. Weedy rice is a feral form of rice that infests paddies worldwide and aggressively outcompetes cultivated varieties. Despite increasing attention in recent years, a comprehensive understanding of the origins of weedy crop relatives and how a universal feralization process acts at the genomic and molecular level to allow the rapid adaptation to weediness are still yet to be explored.
Results
We use whole-genome sequencing to examine the origin and adaptation of 524 global weedy rice samples representing all major regions of rice cultivation. Weed populations have evolved multiple times from cultivated rice, and a strikingly high proportion of contemporary Asian weed strains can be traced to a few Green Revolution cultivars that were widely grown in the late twentieth century. Latin American weedy rice stands out in having originated through extensive hybridization. Selection scans indicate that most genomic regions underlying weedy adaptations do not overlap with domestication targets of selection, suggesting that feralization occurs largely through changes at loci unrelated to domestication.
Conclusions
This is the first investigation to provide detailed genomic characterizations of weedy rice on a global scale, and the results reveal diverse genetic mechanisms underlying worldwide convergent rice feralization.
Journal Article
Multidimensional assessment of the biological effects of electronic cigarettes on lung bronchial epithelial cells
2024
Cigarette smoke (CS) exposure is known to cause injury to respiratory tract epithelial cells and is a contributing factor in the development of chronic obstructive pulmonary disease and lung cancer. Electronic cigarettes (e-cigarettes) are gaining popularity as a potential substitute for conventional cigarettes due to their potential for aiding smoking cessation. However, the safety of e-cigarettes remains uncertain, and scientific evidence on this topic is still limited. In this study, we aimed to investigate the effects of CS and e-cigarette smoke (ECS) of different flavors on human lung bronchial epithelial cells. Real-time smoke exposure was carried out using an air–liquid interface system, and cell viability was assessed. RNA-Seq transcriptome analysis was performed to compare the differences between CS and ECS. The transcriptome analysis revealed a significantly higher number of differentially expressed genes in CS than in ECS. Moreover, the impact of mint-flavored e-cigarettes on cells was found to be greater than that of tobacco-flavored e-cigarettes, as evidenced by the greater number of differentially expressed genes. These findings provide a reference for future safety research on traditional cigarettes and e-cigarettes, particularly those of different flavors. The use of omics-scale methodologies has improved our ability to understand the biological effects of CS and ECS on human respiratory tract epithelial cells, which can aid in the development of novel approaches for smoking cessation and lung disease prevention.
Journal Article