Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Loo, Lenora W. M."
Sort by:
Circulating 27-hydroxycholesterol, lipids, and steroid hormones in breast cancer risk: a nested case–control study of the Multiethnic Cohort Study
by
Shvetsov, Yurii
,
Li, Yuqing
,
Hernandez, Brenda Y.
in
27-Hydroxycholesterol
,
African Americans
,
Anticholesteremic agents
2023
Background
Laboratory studies have indicated that a cholesterol metabolite and selective estrogen receptor modulator, 27-hydroxycholesterol (27HC), may be important in breast cancer etiology and explain associations between obesity and postmenopausal breast cancer risk. Epidemiologic evidence for 27HC in breast cancer risk is limited, particularly in multiethnic populations.
Methods
In a nested case–control study of 1470 breast cancer cases and 1470 matched controls within the Multiethnic Cohort Study, we examined associations of pre-diagnostic circulating 27HC with breast cancer risk among African American, Japanese American, Native Hawaiian, Latino, and non-Latino White postmenopausal females. We used multivariable logistic regression adjusted for age, education, parity, body mass index, and smoking status. Stratified analyses were conducted across racial and ethnic groups, hormone receptor (HR) status, and use of lipid-lowering drugs. We assessed interactions of 27HC with steroid hormones.
Results
27HC levels were inversely related to breast cancer risk (odds ratio [OR] 0.80; 95% confidence interval [CI] 0.58, 1.12), but the association was not statistically significant in the full model. Directions of associations differed by racial and ethnic group. Results suggested an inverse association with HR-negative breast cancer (OR 0.46; 95% CI 0.20, 1.06). 27HC interacted with testosterone, but not estrone, on risk of breast cancer; 27HC was only inversely associated with risk among those with the highest levels of testosterone (OR 0.46; 95% CI 0.24, 0.86).
Conclusion
This is the first US study to examine circulating 27HC and breast cancer risk and reports a weak inverse association that varies across racial and ethnic groups and testosterone level.
Journal Article
Genome-wide association study of abdominal MRI-measured visceral fat: The multiethnic cohort adiposity phenotype study
2023
Few studies have explored the genetic underpinnings of intra-abdominal visceral fat deposition, which varies substantially by sex and race/ethnicity. Among 1,787 participants in the Multiethnic Cohort (MEC)-Adiposity Phenotype Study (MEC-APS), we conducted a genome-wide association study (GWAS) of the percent visceral adiposity tissue (VAT) area out of the overall abdominal area, averaged across L1-L5 (%VAT), measured by abdominal magnetic resonance imaging (MRI). A genome-wide significant signal was found on chromosome 2q14.3 in the sex-combined GWAS (lead variant rs79837492: Beta per effect allele = -4.76; P = 2.62 × 10 −8 ) and in the male-only GWAS (lead variant rs2968545: (Beta = -6.50; P = 1.09 × 10 −9 ), and one suggestive variant was found at 13q12.11 in the female-only GWAS (rs79926925: Beta = 6.95; P = 8.15 × 10 −8 ). The negatively associated variants were most common in European Americans (T allele of rs79837492; 5%) and African Americans (C allele of rs2968545; 5%) and not observed in Japanese Americans, whereas the positively associated variant was most common in Japanese Americans (C allele of rs79926925, 5%), which was all consistent with the racial/ethnic %VAT differences. In a validation step among UK Biobank participants (N = 23,699 of mainly British and Irish ancestry) with MRI-based VAT volume, both rs79837492 (Beta = -0.026, P = 0.019) and rs2968545 (Beta = -0.028, P = 0.010) were significantly associated in men only (n = 11,524). In the MEC-APS, the association between rs79926925 and plasma sex hormone binding globulin levels reached statistical significance in females, but not in males, with adjustment for total adiposity (Beta = -0.24; P = 0.028), on the log scale. Rs79837492 and rs2968545 are located in intron 5 of CNTNAP5 , and rs79926925, in an intergenic region between GJB6 and CRYL1 . These novel findings differing by sex and racial/ethnic group warrant replication in additional diverse studies with direct visceral fat measurements.
Journal Article
Cholesterol lowering drug use and breast cancer survival: the Multiethnic Cohort Study
by
Wilkens, Lynne R
,
Haiman, Christopher A
,
Moksud Nafeesa
in
Breast cancer
,
Cancer research
,
Cholesterol
2021
PurposePrior studies conducted primarily in white populations have suggested that pre-diagnostic cholesterol lowering drugs (CLDs) improved survival among women with breast cancer (BC). However, this association had not been well characterized in diverse racial/ethnic populations. We investigated whether pre-diagnostic CLD use is associated with all-cause and BC-specific mortality among female BC cases of the Multiethnic Cohort (MEC).MethodsCLD use was ascertained through questionnaires administered in 2003–2008. A total of 1448 incident BC cases were identified by linkage to SEER cancer registries in Hawaii and California from 2003 to 2014. Multivariable Cox regression was conducted to estimate hazard ratios (HR) and 95% confidence intervals (CI) of the associations of pre-diagnostic CLD use with all-cause and BC-specific mortality, adjusting for tumor characteristics, first course of treatment, health behaviors, co-morbidities, and demographics. Subgroup analyses by stage and hormone receptor status were conducted for all-cause mortality.ResultsThere were 224 all-cause and 87 BC-specific deaths among the 1448 BC cases during a median follow-up of 4.5 years after diagnosis. Women with BC who ever used CLDs had a 27% lower hazard of all-cause mortality (HR 0.73, 95% CI 0.54–0.98) and 17% lower hazard of BC-specific mortality (HR 0.83, 95% CI 0.49–1.39) compared to never users. CLD use reduced mortality among women with advanced-stage tumors and hormone receptor-positive breast tumors (HR 0.54 95% CI 0.33–0.90; HR 0.69, 95% CI 0.48–0.99, respectively).ConclusionThese findings demonstrate an improved survival associated with CLD use prior to diagnosis in a multiethnic population of women with BC.
Journal Article
Genome-wide association study of pancreatic fat: The Multiethnic Cohort Adiposity Phenotype Study
2021
Several studies have found associations between higher pancreatic fat content and adverse health outcomes, such as diabetes and the metabolic syndrome, but investigations into the genetic contributions to pancreatic fat are limited. This genome-wide association study, comprised of 804 participants with MRI-assessed pancreatic fat measurements, was conducted in the ethnically diverse Multiethnic Cohort-Adiposity Phenotype Study (MEC-APS). Two genetic variants reaching genome-wide significance, rs73449607 on chromosome 13q21.2 (Beta = -0.67, P = 4.50x10 -8 ) and rs7996760 on chromosome 6q14 (Beta = -0.90, P = 4.91x10 -8 ) were associated with percent pancreatic fat on the log scale. Rs73449607 was most common in the African American population (13%) and rs79967607 was most common in the European American population (6%). Rs73449607 was also associated with lower risk of type 2 diabetes (OR = 0.95, 95% CI = 0.89–1.00, P = 0.047) in the Population Architecture Genomics and Epidemiology (PAGE) Study and the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), which included substantial numbers of non-European ancestry participants (53,102 cases and 193,679 controls). Rs73449607 is located in an intergenic region between GSX1 and PLUTO , and rs79967607 is in intron 1 of EPM2A . PLUTO , a lncRNA , regulates transcription of an adjacent gene, PDX1 , that controls beta-cell function in the mature pancreas, and EPM2A encodes the protein laforin, which plays a critical role in regulating glycogen production. If validated, these variants may suggest a genetic component for pancreatic fat and a common etiologic link between pancreatic fat and type 2 diabetes.
Journal Article
Mammographic density and breast tissue expression of inflammatory markers, growth factors, and vimentin
2018
Background
Mammographic density is a known risk factor for breast cancer, but the underlying pathologic characteristics are not well understood. The current analysis investigated the expression of several markers of interest, e.g., inflammation and growth, with mammographic density (MD) in normal and malignant breast tissue specimens from 279 women of the Multiethnic Cohort (MEC).
Methods
Breast cancer cases, recruited from a nested case-control study within the MEC, provided mammograms for density evaluation. Protein expression (COX-2, TNF-α, TGF-β, IGF-1R, IGFBP-2, and vimentin) was assessed by immunohistochemical detection. Linear regression was applied to evaluate the relation between marker expression and percent density and to compute adjusted means with 95% confidence intervals (CI) by marker status while adjusting for confounders.
Results
Due to missing cores and tissue, normal tissue could only be evaluated for COX-2 and vimentin. No significant associations with mammographic density were detected for all markers analyzed. For inflammatory markers (TNF-α, COX-2, and TGF-β) in tumor tissue, MD were non-significantly higher with stronger expression but the differences were very small. For example, the mean MD values for no, weak, and strong TNF-α expression were 35% (95% CI 24–47%), 39% (95% CI 29–48%), and 38% (95% CI 27–50%). In a
posthoc
analysis among postmenopausal women only, the difference across categories of TNF-α expression increased to 25% (95% CI 12–39%), 35% (95% CI 23–48%), and 35% (95% CI 20–49%).
Conclusions
The current analysis offers little support for an involvement of immunohistochemical markers representing inflammatory and growth factor pathways as predictors of breast density.
Journal Article
High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival
by
Yu, Herbert
,
Fu, Yuanyuan
,
Biglia, Nicoletta
in
Adenocarcinoma
,
Breast cancer
,
Cancer research
2018
PurposeMetastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified as a prognostic marker for the metastasis of early-stage non-small cell lung cancer (NSCLCs). We studied MALAT1 expression in breast cancer in relation to disease features and patient survival.MethodsQuantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure MALAT1 expression in tumor samples of 509 breast cancer patients. Hazards ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the association between MALAT1 expression and breast cancer survival using the Cox proportional hazards regression model, and the analysis was adjusted for age at surgery, tumor grade, disease stage, and hormone receptor status. Meta-analysis of multiple microarray datasets from online databases and our own study was performed to evaluate the association of MALAT1 with breast cancer survival.ResultsPatients with low-grade or ER-positive tumors had higher expression of MALAT1 compared to those with high-grade (p = 0.013) or ER-negative (p = 0.0002) tumors. Patients with PR-positive tumors also had higher MALAT1 expression than those with PR-negative tumors (p < 0.0001). In patients with positive hormone receptors or low tumor grade, tumors with high MALAT1 expression were more likely to recur. Survival analysis showed that patients with high expression of MALAT1 had a twofold increase in risk of relapse (p = 0.0083) compared to those with low expression. This association remained significant after adjustment for age at surgery, disease stage, tumor grade, and hormone receptor status. Meta-analysis showed that high MALAT1 expression was associated with poor relapse-free survival in patients with hormone receptor-positive tumors (HR 1.44, 95% CI 1.08–1.92).ConclusionsHigh expression of lncRNA MALAT1 is associated with breast cancer relapse and may play a role in tumor progression.
Journal Article
cis-Expression QTL Analysis of Established Colorectal Cancer Risk Variants in Colon Tumors and Adjacent Normal Tissue
2012
Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent normal colon tissues were used for genome-wide SNP and gene expression profiling. We found that three risk variants (rs10795668, rs4444235 and rs9929218, using near perfect proxies rs706771, rs11623717 and rs2059252, respectively) were significantly associated (FDR q-value ≤0.05) with expression levels of nearby genes (<2 Mb up- or down-stream). We observed an association between the low colorectal cancer risk allele (A) for rs10795668 at 10p14 and increased expression of ATP5C1 (q = 0.024) and between the colorectal cancer high risk allele (C) for rs4444235 at 14q22.2 and increased expression of DLGAP5 (q = 0.041), both in tumor samples. The colorectal cancer low risk allele (A) for rs9929218 at 16q22.1 was associated with a significant decrease in expression of both NOL3 (q = 0.017) and DDX28 (q = 0.046) in the adjacent normal colon tissue samples. Of the four genes, DLGAP5 and NOL3 have been previously reported to play a role in colon carcinogenesis and ATP5C1 and DDX28 are mitochondrial proteins involved in cellular metabolism and division, respectively. The combination of GWAS findings, prior functional studies, and the cis-eQTL analyses described here suggest putative functional activities for three of the colorectal cancer GWAS identified risk loci as regulating the expression of neighboring genes.
Journal Article
Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations
2018
Background
Lung cancer is the leading cause of cancer-related death. While cigarette smoking is the primary cause of this malignancy, risk differs across racial/ethnic groups. For the same number of cigarettes smoked, Native Hawaiians compared to whites are at greater risk and Japanese Americans are at lower risk of developing lung cancer. DNA methylation of specific CpG sites (e.g., in
AHRR
and
F2RL3
) is the most common blood epigenetic modification associated with smoking status. However, the influence of internal smoking dose, measured by urinary nicotine equivalents (NE), on DNA methylation in current smokers has not been investigated, nor has a study evaluated whether for the same smoking dose, circulating leukocyte DNA methylation patterns differ by race.
Methods
We conducted an epigenome-wide association study (EWAS) of NE in 612 smokers from three racial/ethnic groups: whites (
n
= 204), Native Hawaiians (
n
= 205), and Japanese Americans (
n
= 203). Genome-wide DNA methylation profiling of blood leukocyte DNA was measured using the Illumina 450K BeadChip array. Average β value, the ratio of signal from a methylated probe relative to the sum of the methylated and unmethylated probes at that CpG, was the dependent variables in linear regression models adjusting for age, sex, race (for pan-ethnic analysis), and estimated cell-type distribution.
Results
We found that NE was significantly associated with six differentially methylated CpG sites (Bonferroni corrected
p
< 1.48 × 10−7): four in or near the FOXK2, PBX1, FNDC7, and FUBP3 genes and two in non-annotated genetic regions. Higher levels of NE were associated with increasing methylation beta-valuesin all six sites. For all six CpG sites, the association was only observed in Native Hawaiians, suggesting that the influence of smoking dose on DNA methylation patterns is heterogeneous across race/ethnicity (
p
interactions < 8.8 × 10−8). We found two additional CpG sites associated with NE in only Native Hawaiians.
Conclusions
In conclusion, internal smoking dose was associated with increased DNA methylation in circulating leukocytes at specific sites in Native Hawaiian smokers but not in white or Japanese American smokers.
Journal Article
Genome-wide copy number alterations in subtypes of invasive breast cancers in young white and African American women
by
Buist, Diana S. M.
,
Flagg, Elaine W.
,
Flynn, Erin M.
in
Adult
,
African Americans
,
Age Factors
2011
Genomic copy number alterations (CNA) are common in breast cancer. Identifying characteristic CNAs associated with specific breast cancer subtypes is a critical step in defining potential mechanisms of disease initiation and progression. We used genome-wide array comparative genomic hybridization to identify distinctive CNAs in breast cancer subtypes from 259 young (diagnosed with breast cancer at <55 years) African American (AA) and Caucasian American (CA) women originally enrolled in a larger population-based study. We compared the average frequency of CNAs across the whole genome for each breast tumor subtype and found that estrogen receptor (ER)-negative tumors had a higher average frequency of genome-wide gain (
P
< 0.0001) and loss (
P
= 0.02) compared to ER-positive tumors. Triple-negative (TN) tumors had a higher average frequency of genome-wide gain (
P
< 0.0001) and loss (
P
= 0.003) than non-TN tumors. No significant difference in CNA frequency was observed between HER2-positive and -negative tumors. We also identified previously unreported recurrent CNAs (frequency >40%) for TN breast tumors at 10q, 11p, 11q, 16q, 20p, and 20q. In addition, we report CNAs that differ in frequency between TN breast tumors of AA and CA women. This is of particular relevance because TN breast cancer is associated with higher mortality and young AA women have higher rates of TN breast tumors compared to CA women. These data support the possibility that higher overall frequency of genomic alteration events as well as specific focal CNAs in TN breast tumors might contribute in part to the poor breast cancer prognosis for young AA women.
Journal Article
In Silico Functional Pathway Annotation of 86 Established Prostate Cancer Risk Variants
by
Cheng, Iona
,
Fong, Aaron Y. W.
,
Loo, Lenora W. M.
in
Adenocarcinoma
,
Androgen receptors
,
Androgens
2015
Heritability is one of the strongest risk factors of prostate cancer, emphasizing the importance of the genetic contribution towards prostate cancer risk. To date, 86 established prostate cancer risk variants have been identified by genome-wide association studies (GWAS). To determine if these risk variants are located near genes that interact together in biological networks or pathways contributing to prostate cancer initiation or progression, we generated gene sets based on proximity to the 86 prostate cancer risk variants. We took two approaches to generate gene lists. The first strategy included all immediate flanking genes, up- and downstream of the risk variant, regardless of distance from the index variant, and the second strategy included genes closest to the index GWAS marker and to variants in high LD (r2 ≥0.8 in Europeans) with the index variant, within a 100 kb window up- and downstream. Pathway mapping of the two gene sets supported the importance of the androgen receptor-mediated signaling in prostate cancer biology. In addition, the hedgehog and Wnt/β-catenin signaling pathways were identified in pathway mapping for the flanking gene set. We also used the HaploReg resource to examine the 86 risk loci and variants high LD (r2 ≥0.8) for functional elements. We found that there was a 12.8 fold (p = 2.9 x 10-4) enrichment for enhancer motifs in a stem cell line and a 4.4 fold (p = 1.1 x 10-3) enrichment of DNase hypersensitivity in a prostate adenocarcinoma cell line, indicating that the risk and correlated variants are enriched for transcriptional regulatory motifs. Our pathway-based functional annotation of the prostate cancer risk variants highlights the potential regulatory function that GWAS risk markers, and their highly correlated variants, exert on genes. Our study also shows that these genes may function cooperatively in key signaling pathways in prostate cancer biology.
Journal Article