Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
93 result(s) for "Lopez-Rios, Fernando"
Sort by:
Immune Checkpoint Inhibitors in Urothelial Carcinoma: Recommendations for Practical Approaches to PD-L1 and Other Potential Predictive Biomarker Testing
Immuno-oncology (IO) agents (anti–programmed cell death 1 (PD-1) and anti–programmed cell death-ligand 1 (PD-L1)) are approved as first- and second-line treatments for metastatic UC. PD-L1 expression levels in UC tumors help clinicians determine which patients are more likely to respond to IO therapies. Assays for approved IO agents use different antibodies, immunohistochemical protocols, cutoffs (defining “high” vs. “low” PD-L1 expression), and scoring algorithms. The robust control of pre-analytical and analytical standards is needed to obtain high-quality PD-L1 results. To better understand the status and perspectives of biomarker-guided patient selection for anti–PD-1 and anti–PD-L1 agents in UC, three workshops were held from December 2018 to December 2019 in Italy, Malaysia, and Spain. The primary goal was to develop recommendations for best practice approaches to PD-L1 testing in UC. Recommendations pertaining to the interpretation and reporting of the results of PD-L1 assays from experienced pathologists and oncologists from around the globe are included. A test request form for pathology laboratories was developed as a critical first step for oncologists/urologists to encourage communication between clinicians and pathologists, ensuring fast and high-quality test results. In this era of personalized medicine, we briefly discuss novel biomarkers being evaluated for IO agents in UC.
MicroRNA-Dependent Regulation of Transcription in Non-Small Cell Lung Cancer
Squamous cell lung cancer (SCC) and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC), and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA)-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA)) and mRNA profiling (Whole Genome 44 K array G112A, Agilent) was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708) and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1) were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.
Treating KRAS-mutant NSCLC: latest evidence and clinical consequences
KRAS mutations represent one of the most prevalent oncogenic driver mutations in non-small cell lung cancer (NSCLC). For many years we have unsuccessfully addressed KRAS mutation as a unique disease. The recent widespread use of comprehensive genomic profiling has identified different subgroups with prognostic implications. Moreover, recent data recognizing the distinct biology and therapeutic vulnerabilities of different KRAS subgroups have allowed us to explore different treatment approaches. Small molecules that selectively inhibit KRAS G12C or use of immune checkpoint inhibitors based on co-mutation status are some examples which anticipate that personalized treatment for this challenging disease is finally on the horizon.
Immunotherapy Moves to the Early-Stage Setting in Non-Small Cell Lung Cancer: Emerging Evidence and the Role of Biomarkers
Despite numerous advances in targeted therapy and immunotherapy in the last decade, lung cancer continues to present the highest mortality rate of all cancers. Targeted therapy based on specific genomic alterations, together with PD-1 and CTLA-4 axis blocking-based immunotherapy, have significantly improved survival in advanced non-small cell lung cancer (NSCLC) and both therapies are now well-established in this clinical setting. However, it is time for immunotherapy to be applied in patients with early-stage disease, which would be an important qualitative leap in the treatment of lung cancer patients with curative intent. Preliminary data from a multitude of studies are highly promising, but therapeutic decision-making should be guided by an understanding of the molecular features of the tumour and host. In the present review, we discuss the most recently published studies and ongoing clinical trials, controversies, future challenges and the role of biomarkers in the selection of best therapeutic options.
Comparison of Testing Methods for the Detection of BRAF V600E Mutations in Malignant Melanoma: Pre-Approval Validation Study of the Companion Diagnostic Test for Vemurafenib
The cobas 4800 BRAF V600 Mutation Test is a CE-marked and FDA-approved in vitro diagnostic assay used to select patients with metastatic melanoma for treatment with the selective BRAF inhibitor vemurafenib. We describe the pre-approval validation of this test in two external laboratories. Melanoma specimens were tested for BRAF V600 mutations at two laboratories with the: cobas BRAF Mutation Test; ABI BRAF test; and bidirectional direct sequencing. Positive (PPA) and negative (NPA) percent agreements were determined between the cobas test and the other assays. Specimens with discordant results were tested with massively parallel pyrosequencing (454). DNA blends with 5% mutant alleles were tested to assess detection rates. Invalid results were observed in 8/116 specimens (6·9%) with Sanger, 10/116 (8·6%) with ABI BRAF, and 0/232 (0%) with the cobas BRAF test. PPA was 97·7% for V600E mutation for the cobas BRAF test and Sanger, and NPA was 95·3%. For the cobas BRAF test and ABI BRAF, PPA was 71·9% and NPA 83·7%. For 16 cobas BRAF test-negative/ABI BRAF-positive specimens, 454 sequencing detected no codon 600 mutations in 12 and variant codon 600 mutations in four. For eight cobas BRAF test-positive/ABI BRAF-negative specimens, four were V600E and four V600K by 454 sequencing. Detection rates for 5% mutation blends were 100% for the cobas BRAF test, 33% for Sanger, and 21% for the ABI BRAF. Reproducibility of the cobas BRAF test was 111/116 (96%) between the two sites. It is feasible to evaluate potential companion diagnostic tests in external laboratories simultaneously to the pivotal clinical trial validation. The health authority approved assay had substantially better performance characteristics than the two other methods. The overall success of the cobas BRAF test is a proof of concept for future biomarker development.
Oncogenic activity of Cdc6 through repression of the INK4/ARF locus
Cancer target The INK4/ARF locus encodes three tumour suppressors and is frequently inactivated in human cancer. Gonzalez et al . have now identified a possible DNA replication origin at the INK4/ARF locus that can mediate its transcriptional silencing, for example when the replication protein Cdc6 is overexpressed as seen in some human tumours. This points to Cdc6 as an alternative target for the inactivation of INK4/ARF in human cancer. A putative DNA replication origin at the INK4/ARF locus — which encodes three tumour suppressors — has been identified that can mediate its transcriptional silencing. The INK4/ARF locus encodes three tumour suppressors (p15 INK4b , ARF and p16 INK4a ) and is among the most frequently inactivated loci in human cancer 1 , 2 . However, little is known about the mechanisms that govern the expression of this locus. Here we have identified a putative DNA replication origin at the INK4/ARF locus that assembles a multiprotein complex containing Cdc6, Orc2 and MCMs, and that coincides with a conserved noncoding DNA element (regulatory domain RD INK4/ARF ). Targeted and localized RNA-interference-induced heterochromatinization of RD INK4/ARF results in transcriptional repression of the locus, revealing that RD INK4/ARF is a relevant transcriptional regulatory element. Cdc6 is overexpressed in human cancers, where it might have roles in addition to DNA replication 3 , 4 , 5 . We have found that high levels of Cdc6 result in RD INK4/ARF -dependent transcriptional repression, recruitment of histone deacetylases and heterochromatinization of the INK4/ARF locus, and a concomitant decrease in the expression of the three tumour suppressors encoded by this locus. This mechanism is reminiscent of the silencing of the mating-type HM loci in yeast by replication factors 6 . Consistent with its ability to repress the INK4/ARF locus, Cdc6 has cellular immortalization activity and neoplastic transformation capacity in cooperation with oncogenic Ras. Furthermore, human lung carcinomas with high levels of Cdc6 are associated with low levels of p16 INK4a . We conclude that aberrant expression of Cdc6 is oncogenic by directly repressing the INK4/ARF locus through the RD INK4/ARF element.
ERBB2 Mutation Testing in NSCLC: A Pan-European Real-World Evaluation of the Oncomine Precision Assay
Background/Objectives: The non-small-cell lung cancer (NSCLC) therapeutic landscape has undergone a profound transformation with the introduction of multiple personalized treatment options. Mutations in ERBB2 (HER2) have recently emerged as promising novel targets for the treatment of non-squamous NSCLC (nsNSCLC). Accurate, rapid, and efficient molecular profiling is crucial for identifying patients who may benefit from targeted therapies, including HER2-directed agents. Materials and Methods: Here, we aimed to retrospectively assess the performance of the Oncomine™ Precision Assay* (OPA) in combination with the Ion Torrent Genexus™ Integrated Sequencer* (Thermo Fisher Scientific. Waltham, MA, USA) for detecting ERBB2 mutations in nsNSCLC. A total of 108 archived nsNSCLC samples, consisting of biopsies, resections, and cytological specimens, were used to assess concordance with in-house-validated orthogonal tests. Results: The OPA showed high sensitivity and specificity with an overall accuracy of 100% for single-nucleotide variants (SNVs) and insertions and deletions (Indels). SNVs and Indels with allele frequencies as low as 5% were correctly identified across samples with a tumor cell content ranging from 5% to 95%. Additionally, the assay demonstrated high reproducibility across the six participating laboratories. The turnaround time of the OPA was notably shorter compared to traditional orthogonal methods, facilitating rapid molecular report generation. Conclusions: The OPA in combination with the Ion Torrent Genexus™ System allows for highly sensitive and specific detection of relevant ERBB2 mutations. The assay’s streamlined workflow, coupled with its automated data analysis pipeline, enables a fast turnaround time for testing across a range of sample types. This includes samples with reduced tumor cell content and limited available input. This study demonstrates the future potential of using this assay in a clinical setting.
HER2/neu testing for anti-HER2-based therapies in patients with unresectable and/or metastatic gastric cancer
Aim To study the HER2 gene amplification or overexpression in patients with advanced gastric cancer (GC) and their association with patient characteristics and patient survival. Patients and methods Tumour tissue samples from 148 patients with advanced GC were studied for HER2 by immunohistochemistry (IHC), fluorescence in situ hybridisation (FISH) and dual colour silver enhanced in situ hybridisation (dc-SISH) methods. Clinicopathological data from all patients were collected. Progression free survival and overall survival were also analysed. Results Mean age was 67 (33–83) years; 75% were male subjects, and 51% had intestinal histological type. HER2+ rates were 10.1% (15/148) by IHC, 18.2% (27/148) by FISH+ or 21.6% (32/148) by dc-SISH+. There were significant differences in HER2+ rates according to histological type when FISH (intestinal, 23%; no intestinal, 4%; p<0.0001) or dc-SISH (intestinal, 26%; no intestinal, 6%; p<0.0001) amplification techniques were used. Median overall survival was significantly longer in HER2+ patients despite the determination technique used: IHC (21.4 vs 9.8 months, HR 0.42; p=0.005); FISH (19.6 vs 9.7 months, HR 0.49; p=0.007) or dc-SISH (19.6 vs 9.7 months, HR 0.53; p=0.009). Factors associated with favourable survival in the multivariate analysis were intestinal type and Her2+ determination by IHC, FISH or dc-SISH. Conclusion HER2 gene amplification is significantly associated with patient survival. HER2 gene amplification approaches might be an optimal HER2/neu testing strategy for the selection of HER2+ GC patients who are candidates to be treated with anti-HER2 therapies.
Relevance of insulin-like growth factor 1 receptor gene expression as a prognostic factor in non-small-cell lung cancer
Purpose Signalling through the insulin-like growth factor 1 receptor (IGF-1R) is implicated in carcinogenesis, metastasis, and resistance to cytotoxic cancer therapies. The purpose of this study was to investigate the prognostic role of IGF-1R expression in surgically resected non-small-cell lung cancer (NSCLC), and responses to IGF-1R tyrosine kinase inhibitor NVP-ADW742 in a panel of lung cancer cell lines. Methods Insulin-like growth factor 1 receptor (IGF-1R) expression was evaluated by quantitative RT-PCR in 115 NSCLC samples and in a panel of 6 NSCLC cell lines. Cytotoxicity experiments with IGF-1R inhibitor and conventional systemic drugs such as paclitaxel in cell lines were realised. Results Insulin-like growth factor 1 receptor (IGF-1R) was differentially expressed across histologic subtypes, with the lowest levels observed in squamous cell tumours. Median survival was longer in patients with squamous tumour histology expressing low IGF-1R levels. In multivariable analysis, ageing and high tumour stage were significant predictors of worse overall survival. The hazard of death was lower in patients with squamous histology and low IGF-1R gene expression. There was no correlation between IGF-1R expression and response to tyrosine kinase inhibitor in cell lines tested. However, combination drug treatment resulted in synergistically enhanced antiproliferative effects on several cell lines. Conclusions These findings suggest that IGF-1R is a potential target for therapy in NSCLC patients. Combination therapies will have an important role in treatment.
PDGFRα/β and VEGFR2 polymorphisms in colorectal cancer: incidence and implications in clinical outcome
Background Angiogenesis plays an essential role in tumor growth and metastasis, and is a major target in cancer therapy. VEGFR and PDGFR are key players involved in this process. The purpose of this study was to assess the incidence of genetic variants in these receptors and its potential clinical implications in colorectal cancer (CRC). Methods VEGFR2, PDGFRα and PDGFRβ mutations were evaluated by sequencing their tyrosine kinase domains in 8 CRC cell lines and in 92 samples of patients with CRC. Correlations with clinicopathological features and survival were analyzed. Results Four SNPs were identified, three in PDGFRα [exon 12 (A12): c.1701A>G; exon 13 (A13): c.1809G>A; and exon 17 (A17): c.2439+58C>A] and one in PDGFRβ [exon 19 (B19): c.2601A>G]. SNP B19, identified in 58% of tumor samples and in 4 cell lines (LS174T, LS180, SW48, COLO205), was associated with higher PDGFR and pPDGFR protein levels. Consistent with this observation, 5-year survival was greater for patients with PDGFR B19 wild type tumors (AA) than for those harboring the G-allele genotype (GA or GG) (51% vs 17%; p=0.073). Multivariate analysis confirmed SNP B19 (p=0.029) was a significant prognostic factor for survival, independent of age (p=0.060) or TNM stage (p<0.001). Conclusions PDGFRβ exon 19 c.2601A>G SNP is commonly encountered in CRC patients and is associated with increased pathway activation and poorer survival. Implications regarding its potential influence in response to PDGFR-targeted agents remain to be elucidated.