Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"Loria, J. Patrick"
Sort by:
Eigenvector centrality for characterization of protein allosteric pathways
by
Lisi, George P.
,
Rivalta, Ivan
,
Hendrickson, Heidi P.
in
Allosteric properties
,
Allosteric Regulation
,
Allosteric regulation, protein, graphs
2018
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix hα 1, and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Journal Article
Conformational Motions Regulate Phosphoryl Transfer in Related Protein Tyrosine Phosphatases
by
Hengge, Alvan C.
,
Loria, J. Patrick
,
Whittier, Sean K.
in
active sites
,
Bacterial Outer Membrane Proteins - chemistry
,
Biochemistry
2013
Many studies have implicated a role for conformational motions during the catalytic cycle, acting to optimize the binding pocket or facilitate product release, but a more intimate role in the chemical reaction has not been described. We address this by monitoring active-site loop motion in two protein tyrosine phosphatases (PTPs) using nuclear magnetic resonance spectroscopy. The PTPs, YopH and PTP1B, have very different catalytic rates; however, we find in both that the active-site loop closes to its catalytically competent position at rates that mirror the phosphotyrosine cleavage kinetics. This loop contains the catalytic acid, suggesting that loop closure occurs concomitantly with the protonation of the leaving group tyrosine and explains the different kinetics of two otherwise chemically and mechanistically indistinguishable enzymes.
Journal Article
A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi
by
Xiong, Yong
,
Chaudhuri, Apala
,
Beckmann, John F.
in
631/326/41/2536
,
631/45/474/2289
,
631/45/612/645
2020
Ubiquitin mediated signaling contributes critically to host cell defenses during pathogen infection. Many pathogens manipulate the ubiquitin system to evade these defenses. Here we characterize a likely effector protein bearing a deubiquitylase (DUB) domain from the obligate intracellular bacterium
Orientia tsutsugamushi
, the causative agent of scrub typhus. The Ulp1-like DUB prefers ubiquitin substrates over ubiquitin-like proteins and efficiently cleaves polyubiquitin chains of three or more ubiquitins. The co-crystal structure of the DUB (OtDUB) domain with ubiquitin revealed three bound ubiquitins: one engages the S1 site, the second binds an S2 site contributing to chain specificity and the third binds a unique ubiquitin-binding domain (UBD). The UBD modulates OtDUB activity, undergoes a pronounced structural transition upon binding ubiquitin, and binds monoubiquitin with an unprecedented ~5 nM dissociation constant. The characterization and high-resolution structure determination of this enzyme should aid in its development as a drug target to counter
Orientia
infections.
Many pathogens manipulate ubiquitin-mediated signaling to evade host cell defense. Here, the authors characterize the structure and enzymatic activity of a deubiquitylase domain from the causative pathogen of scrub typhus, providing evidence for a distinct mechanism of ubiquitin chain selectivity.
Journal Article
A simple method to determine changes in the affinity between HisF and HisH in the Imidazole Glycerol Phosphate Synthase heterodimer
by
Almeida, Vitor M.
,
Loria, J. Patrick
,
Marana, Sandro R.
in
Affinity
,
Allosteric properties
,
Aminohydrolases - genetics
2022
The bi-enzyme HisF-HisH heterodimer is part of the pathway that produces histidine and purines in bacteria and lower eukaryotes, but it is absent in mammals. This heterodimer has been largely studied probing the basis of the allosteric effects and the structural stability in proteins. It is also a potential target for antibacterial drugs. In this work, we developed a simple method to evaluate changes in the affinity between HisF and HisH in the heterodimer of the bacteria Thermotoga maritima . HisH contains a single tryptophan residue, which is exposed in the free protein, but buried in the heterodimer interface. Hence, the intrinsic fluorescence maximum of this residue changes to shorter wavelengths upon dimerization. Thus, we used the fluorescence intensity at this shorter wavelength to monitor heterodimer accumulation when HisH was combined with sub-stoichiometric HisF. Under conditions where the HisF-HisH heterodimer is in equilibrium with the free states of these enzymes, when [HisH] > [HisF], we deduced a linear function connecting [HisF-HisH] to [HisF], in which the slope depends on the heterodimer dissociation constant ( K d ). Based on this equation, taking fluorescence intensities as proxies of the heterodimer and HisF concentrations, we experimentally determined the K d at four different temperatures. These K d values were compared to those evaluated using ITC. Both methods revealed an increase in the HisF and HisH binding affinity as the temperature increases. In spite of differences in their absolute values, the K d determined using these methods presented an evident linear correlation. To demonstrate the effectiveness of the fluorescence method we determined the effect on the K d caused by 12 single mutations in HisF. Coherently, this test singled out the only mutation in the binding interface. In brief, the method described here effectively probes qualitative effects on the K d , can be carried out using common laboratory equipment and is scalable.
Journal Article
Allosteric pathways in imidazole glycerol phosphate synthase
by
Lee, Ning-Shiuan
,
Loria, J. Patrick
,
Rivalta, Ivan
in
Algorithms
,
Allosteric Regulation
,
Allosteric Site
2012
Protein allosteric pathways are investigated in the imidazole glycerol phosphate synthase heterodimer in an effort to elucidate how the effector (PRFAR, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) activates glutaminase catalysis at a distance of 25 Å from the glutamine-binding site. We apply solution NMR techniques and community analysis of dynamical networks, based on mutual information of correlated protein motions in the active and inactive enzymes. We find evidence that the allosteric pathways in the PRFAR bound enzyme involve conserved residues that correlate motion of the PRFAR binding loop to motion at the protein-protein interface, and ultimately at the glutaminase active site. The imidazole glycerol phosphate synthase bienzyme is an important branch point for the histidine and nucleotide biosynthetic pathways and represents a potential therapeutic target against microbes. The proposed allosteric mechanism and the underlying allosteric pathways provide fundamental insights for the design of new allosteric drugs and/or alternative herbicides.
Journal Article
Altering the allosteric pathway in IGPS suppresses millisecond motions and catalytic activity
by
Lisi, George P.
,
Loria, J. Patrick
,
East, Kyle W.
in
Allosteric properties
,
Biological Sciences
,
Biophysics and Computational Biology
2017
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, meaning that its catalytic rate is critically dependent on activation by its allosteric ligand, N′-[(5′-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR). The allosteric mechanism of IGPS is reliant on millisecond conformational motions for efficient catalysis. We engineered four mutants of IGPS designed to disrupt millisecond motions and allosteric coupling to identify regions that are critical to IGPS function. Multiple-quantum Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion experiments and NMR chemical shift titrations reveal diminished enzyme flexibility and a reshaping of the allosteric connectivity in each mutant construct, respectively. The functional relevance of the observed motional quenching is confirmed by significant reductions in glutaminase kinetic activity and allosteric ligand binding affinity. This work presents relevant conclusions toward the control of protein allostery and design of unique allosteric sites for potential enzyme inhibitors with regulatory or therapeutic benefit.
Journal Article
Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase
2023
Allosteric drugs have the potential to revolutionize biomedicine due to their enhanced selectivity and protection against overdosage. However, we need to better understand allosteric mechanisms in order to fully harness their potential in drug discovery. In this study, molecular dynamics simulations and nuclear magnetic resonance spectroscopy are used to investigate how increases in temperature affect allostery in imidazole glycerol phosphate synthase. Results demonstrate that temperature increase triggers a cascade of local amino acid-to-amino acid dynamics that remarkably resembles the allosteric activation that takes place upon effector binding. The differences in the allosteric response elicited by temperature increase as opposed to effector binding are conditional to the alterations of collective motions induced by either mode of activation. This work provides an atomistic picture of temperature-dependent allostery, which could be harnessed to more precisely control enzyme function.
Using a combination of MD simulations and NMR, the authors investigate how temperature affects allostery in imidazole glycerol phosphate synthase (IGPS), revealing that increase of temperature triggers local amino acid dynamics and providing insights into mechanism of allosteric regulation.
Journal Article
mechanism of rate-limiting motions in enzyme function
2007
The ability to use conformational flexibility is a hallmark of enzyme function. Here we show that protein motions and catalytic activity in a RNase are coupled and display identical solvent isotope effects. Solution NMR relaxation experiments identify a cluster of residues, some distant from the active site, that are integral to this motion. These studies implicate a single residue, histidine-48, as the key modulator in coupling protein motion with enzyme function. Mutation of H48 to alanine results in loss of protein motion in the isotope-sensitive region of the enzyme. In addition, kcat decreases for this mutant and the kinetic solvent isotope effect on kcat, which was 2.0 in WT, is near unity in H48A. Despite being located 18 Å from the enzyme active site, H48 is essential in coordinating the motions involved in the rate-limiting enzymatic step. These studies have identified, of [almost equal to]160 potential exchangeable protons, a single site that is integral in the rate-limiting step in RNase A enzyme function.
Journal Article
MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations
2013
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine. In addition to its known receptor-mediated biological activities, MIF possesses a catalytic site of unknown function between subunits of a homotrimer. Each subunit contributes three β-strands to adjacent subunits to form a core seven-stranded β-sheet for each monomer. MIF monomers, dimers, or trimers have been reported, but the active form that binds and activates the MIF receptor (CD74) is still a matter of debate. A cysteine mutant (N110C) that covalently locks MIF into a trimer by forming a disulfide with Cys-80 of an adjacent subunit is used to study this issue. Partial catalytic activity and receptor binding to CD74 are retained by N110C (locked trimer), but there is no cellular signaling. Wild-type MIF-induced cellular signaling, in vivo lung neutrophil accumulation, and alveolar permeability are inhibited with a fivefold excess of N110C. NMR and size-exclusion chromatography with light scattering reveal that N110C can form a higher-order oligomer in equilibrium with a single locked trimer. The X-ray structure confirms a local conformational change that disrupts the subunit interface and results in global changes responsible for the oligomeric form. The structure also confirms these changes are consistent for the partial catalytic and receptor binding activities. The absence of any potential monomer and the retention of partial catalytic and receptor binding activities despite changes in conformation (and dynamics) in the mutant support an endogenous MIF trimer that binds and activates CD74 at nanomolar concentrations. This conclusion has implications for therapeutic development.
Journal Article