Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Losick, Richard M."
Sort by:
Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis
A model system for investigating how developmental regulatory networks determine cell fate is spore formation in Bacillus subtilis. The master regulator for sporulation is Spo0A, which is activated by phosphorylation via a phosphorelay that is subject to three positive feedback loops. The ultimate decision to sporulate is, however, stochastic in that only a portion of the population sporulates even under optimal conditions. It was previously assumed that activation of Spo0A and hence entry into sporulation is subject to a bistable switch mediated by one or more feedback loops. Here we reinvestigate the basis for bimodality in sporulation. We show that none of the feedback loops is rate limiting for the synthesis and phosphorylation of Spo0A. Instead, the loops ensure a just-in-time supply of relay components for rising levels of phosphorylated Spo0A, with phosphate flux through the relay being limiting for Spo0A activation and sporulation. In addition, genes under Spo0A control did not exhibit a bimodal pattern of expression as expected for a bistable switch. In contrast, we observed a highly heterogeneous pattern of Spo0A activation that increased in a nonlinear manner with time. We present a computational model for the nonlinear increase and propose that the phosphorelay is a noise generator and that only cells that attain a threshold level of phosphorylated Spo0A sporulate.
Evidence That Subcellular Localization of a Bacterial Membrane Protein is Achieved by Diffusion and Capture
Bacteria lack an endoplasmic reticulum, a Golgi apparatus, and transport vesicles and yet are capable of sorting and delivering integral membrane proteins to particular sites within the cell with high precision. What is the pathway by which membrane proteins reach their proper subcellular destination in bacteria? We have addressed this question by using green fluorescent protein (GFP) fused to a polytopic membrane protein (SpoIVFB) that is involved in the process of sporulation in the bacterium Bacillus subtilis. SpoIVFB-GFP localizes to a region of the sporulating cell known as the outer forespore membrane, which is distinct from the cytoplasmic membrane. Experiments are presented that rule out a mechanism in which SpoIVFB-GFP localizes to all membranes but is selectively eliminated from the cytoplasmic membrane by proteolytic degradation and argue against a model in which SpoIVFB-GFP is selectively inserted into the outer forespore membrane. Instead, the results are most easily compatible with a model in which SpoIVFB-GFP achieves proper localization by insertion into the cytoplasmic membrane followed by diffusion to, and capture in, the outer forespore membrane. The possibility that diffusion and capture is a general feature of protein localization in bacteria is discussed.
Propagation by Sporulation in the Guinea Pig Symbiont Metabacterium polyspora
The Gram-positive bacterium Metabacterium polyspora is an uncultivated symbiont of the guinea pig gastrointestinal tract. Here we present evidence that in M. polyspora vegetative cell division has taken on a minor, and apparently dispensable, role in propagation. Instead, this unusual bacterium has evolved the capacity to produce progeny in the form of multiple endospores. Endospore formation is coordinated with transit of the bacterium through the gastrointestinal tract of the guinea pig. For the majority of cells, sporulation is initiated in the ileum, whereas later stages of development take place in the cecum. We show that multiple endospores are generated both by asymmetric division at both poles of the cell and by symmetric division of the endospores at an early stage of their development. Our findings suggest that M. polyspora represents an intermediate step in the evolution of a novel mode of cellular propagation that originates with endospore-forming Bacillus and Clostridium spp., which reproduce by binary fission, and extends to Epulopiscium spp., which create multiple viviparous offspring by a process of internal reproduction.
Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes
Many proteins reside at the cell poles in rod-shaped bacteria. Several hypotheses have drawn a connection between protein localization and the large cell-wall curvature at the poles. One hypothesis has centered on the formation of microdomains of the lipid cardiolipin (CL), its localization to regions of high membrane curvature, and its interaction with membrane-associated proteins. A lack of experimental techniques has left this hypothesis unanswered. This paper describes a microtechnology-based technique for manipulating bacterial membrane curvature and quantitatively measuring its effect on the localization of CL and proteins in cells. We confined Escherichia coli spheroplasts in microchambers with defined shapes that were embossed into a layer of polymer and observed that the shape of the membrane deformed predictably to accommodate the walls of the microchambers. Combining this technique with epifluorescence microscopy and quantitative image analyses, we characterized the localization of CL microdomains in response to E. coli membrane curvature. CL microdomains localized to regions of high intrinsic negative curvature imposed by microchambers. We expressed a chimera of yellow fluorescent protein fused to the N-terminal region of MinD--a spatial determinant of E. coli division plane assembly--in spheroplasts and observed its colocalization with CL to regions of large, negative membrane curvature. Interestingly, the distribution of MinD was similar in spheroplasts derived from a CL synthase knockout strain. These studies demonstrate the curvature dependence of CL in membranes and test whether these structures participate in the localization of MinD to regions of negative curvature in cells.
Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence
In the face of antibiotics, bacterial populations avoid extinction by harboring a subpopulation of dormant cells that are largely drug insensitive. This phenomenon, termed \"persistence,\" is a major obstacle for the treatment of a number of infectious diseases. The mechanism that generates both actively growing as well as dormant cells within a genetically identical population is unknown. We present a detailed study of the toxin—antitoxin module implicated in antibiotic persistence of Escherichia coli. We find that bacterial cells become dormant if the toxin level is higher than a threshold, and that the amount by which the threshold is exceeded determines the duration of dormancy. Fluctuations in toxin levels above and below the threshold result in coexistence of dormant and growing cells. We conclude that toxin—antitoxin modules in general represent a mixed network motif that can serve to produce a subpopulation of dormant cells and to supply a mechanism for regulating the frequency and duration of growth arrest. Toxin—antitoxin modules thus provide a natural molecular design for implementing a bet-hedging strategy.
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli
Bacillithiol (BSH), the α-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic acid, is a major low-molecular-weight thiol in Bacillus subtilis and related bacteria. Here, we identify genes required for BSH biosynthesis and provide evidence that the synthetic pathway has similarities to that established for the related thiol (mycothiol) in the Actinobacteria. Consistent with a key role for BSH in detoxification of electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are encoded in an operon with methylglyoxal synthase. BshB1 is partially redundant in function with BshB2, a deacetylase of the LmbE family. Phylogenomic profiling identified a conserved unknown function protein (COG4365) as a candidate cysteine-adding enzyme (BshC) that co-occurs in genomes also encoding BshA, BshB1, and BshB2. Additional evolutionarily linked proteins include a thioredoxin reductase homolog and two thiol:disulfide oxidoreductases of the DUF1094 (CxC motif) family. Mutants lacking BshA, BshC, or both BshB1 and BshB2 are devoid of BSH. BSH is at least partially redundant in function with other low-molecular-weight thiols: redox proteomics indicates that protein thiols are largely reduced even in the absence of BSH. At the transcriptional level, the induction of genes controlled by two thiol-based regulators (OhrR, Spx) occurs normally. However, BSH null cells are significantly altered in acid and salt resistance, sporulation, and resistance to electrophiles and thiol reactive compounds. Moreover, cells lacking BSH are highly sensitive to fosfomycin, an epoxide-containing antibiotic detoxified by FosB, a prototype for bacillithiol-S-transferase enzymes.
Competence-Programmed Predation of Noncompetent Cells in the Human Pathogen Streptococcus pneumoniae: Genetic Requirements
Natural competence for genetic transformation is the best-characterized feature of the major human pathogen Streptococcus pneumoniae. Recent studies have shown the virulence of competence-deficient mutants to be attenuated, but the nature of the connection between competence and virulence remained unknown. Here we document the release, triggered by competent cells, of virulence factors (e.g., the cytolytic toxin pneumolysin) from noncompetent cells. This phenomenon, which we name allolysis, involves a previously undescribed bacteriocin system consisting of a two-peptide bacteriocin, CibAB, and its immunity factor, CibC; the major autolysin, LytA, and lysozyme, LytC; and a proposed new amidase, CbpD. We show that CibAB are absolutely required for allolysis, whereas LytA and LytC can be supplied either by the competent cells or by the targeted cells. We propose that allolysis constitutes a competence-programmed mechanism of predation of noncompetent cells, which benefits to the competent cells and contributes to virulence by coordinating the release of virulence factors.
Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein
We show that translation initiation factor EF-Tu plays a second important role in cell shape maintenance in the bacterium Bacillus subtilis. EF-Tu localizes in a helical pattern underneath the cell membrane and colocalizes with MreB, an actin-like cytoskeletal element setting up rod cell shape. The localization of MreB and of EF-Tu is interdependent, but in contrast to the dynamic MreB filaments, EF-Tu structures are more static and may serve as tracks for MreB filaments. In agreement with this idea, EF-Tu and MreB interact in vivo and in vitro. Lowering of the EF-Tu levels had a minor effect on translation but a strong effect on cell shape and on the localization of MreB, and blocking of the function of EF-Tu in translation did not interfere with the localization of MreB, showing that, directly or indirectly, EF-Tu affects the cytoskeletal MreB structure and thus serves two important functions in a bacterium.
The SapB Morphogen Is a Lantibiotic-Like Peptide Derived from the Product of the Developmental Gene ramS in Streptomyces coelicolor
SapB is a morphogenetic peptide that is important for aerial mycelium formation by the filamentous bacterium Streptomyces coelicolor. Production of SapB commences during aerial mycelium formation and depends on most of the genes known to be required for the morphogenesis of aerial hyphae. Furthermore, the application of purified SapB to mutants blocked in morphogenesis restores their capacity to form aerial hyphae. Here, we present evidence that SapB is a lantibiotic-like peptide that is derived by posttranslational modification from the product of a gene (ramS) in the four-gene ram operon, which is under the control of the regulatory gene ramR. We show that the product of another gene in the operon (ramC) contains a region that is similar to enzymes involved in the biosynthesis of lantibiotics, suggesting that it might be involved in the posttranslational processing of RamS. We conclude that SapB is derived from RamS through proteolytic cleavage and the introduction of four dehydroalanine residues and two lanthionine bridges. We provide an example of a morphogenetic role for an antibiotic-like molecule.
Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis
Ethanolamine, a product of the breakdown of phosphatidylethanolamine from cell membranes, is abundant in the human intestinal tract and in processed foods. Effective utilization of ethanolamine as a carbon and nitrogen source may provide a survival advantage to bacteria that inhabit the gastrointestinal tract and may influence the virulence of pathogens. In this work, we describe a unique series of posttranscriptional regulatory strategies that influence expression of ethanolamine utilization genes (eut) in Enterococcus, Clostridium, and Listeria species. One of these mechanisms requires an unusual 2-component regulatory system. Regulation involves specific sensing of ethanolamine by a sensor histidine kinase (EutW), resulting in autophosphorylation and subsequent phosphoryl transfer to a response regulator (EutV) containing a RNA-binding domain. Our data suggests that EutV is likely to affect downstream gene expression by interacting with conserved transcription termination signals located within the eut locus. Breakdown of ethanolamine requires adenosylcobalamin (AdoCbl) as a cofactor, and, intriguingly, we also identify an intercistronic AdoCbl riboswitch that has a predicted structure different from previously established AdoCbl riboswitches. We demonstrate that association of AdoCbl to this riboswitch prevents formation of an intrinsic transcription terminator element located within the intercistronic region. Together, these results suggest an intricate and carefully coordinated interplay of multiple regulatory strategies for control of ethanolamine utilization genes. Gene expression appears to be directed by overlapping posttranscriptional regulatory mechanisms, each responding to a particular metabolic signal, conceptually akin to regulation by multiple DNA-binding transcription factors.