Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Louderback, Kate"
Sort by:
Single-cell multiregion dissection of Alzheimer’s disease
2024
Alzheimer’s disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood
1
–
3
. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer’s disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer’s disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer’s disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer’s disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer’s disease pathology.
A regional atlas of the ageing human brain—spanning six distinct anatomical regions from individuals with and without Alzheimer’s dementia—provides insights into cellular vulnerability, response and resilience to Alzheimer’s disease pathology
Journal Article
Genome-wide CRISPR screen reveals Wnt signaling defects regulate lipid accumulation in APOE4 oligodendrocytes
2025
APOE4 is the largest genetic risk factor for late-onset Alzheimer's disease, but the cellular mechanisms by which APOE variants influence risk of disease remain incompletely understood. We have previously found that APOE4 expression led to the intracellular accumulation of lipid droplets in oligodendrocytes, causing decreased myelination. However, the mechanisms by which APOE4 alters lipid metabolism are not fully understood. Here, we leveraged a genome-wide CRISPR screen and ATAC-sequencing in human induced pluripotent stem cell (iPSC)-derived oligodendrocytes to dissect APOE4's lipid-associated mechanisms of action. Using these approaches, we identified decreased Wnt signaling, and overactive GSK3b activity, as regulators of lipid droplet accumulation in oligodendrocytes. Genetic and pharmacological inhibition of GSK3b reduced lipid droplets in APOE4 oligodendrocytes, and increased myelination in three-dimensional iPSC-derived brain organoids. Finally, we show that pharmacological inhibition of GSK3b reduces lipid droplets and improves myelination in APOE4;PS19 Tau transgenic mice. Together, our results provide a framework for understanding the mediation of APOE4-related changes to oligodendrocyte lipid metabolism and myelination.
Journal Article