Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,165
result(s) for
"Louis, Joe"
Sort by:
Interplay of phytohormones facilitate sorghum tolerance to aphids
2022
Key messageInteractions among phytohormones are essential for providing tolerance of sorghum plants to aphids.Plant’s encounter with insect herbivores trigger defense signaling networks that fine-tune plant resistance to insect pests. Although it is well established that phytohormones contribute to antixenotic- and antibiotic-mediated resistance to insect pests, their role in conditioning plant tolerance, the most durable and promising category of host plant resistance, is largely unknown. Here, we screened a panel of sorghum (Sorghum bicolor) inbred lines to identify and characterize sorghum tolerance to sugarcane aphids (SCA; Melanaphis sacchari Zehntner), a relatively new and devastating pest of sorghum in the United States. Our results suggest that the sorghum genotype SC35, the aphid-tolerant line identified among the sorghum genotypes, displayed minimal plant biomass loss and a robust photosynthetic machinery, despite supporting higher aphid population. Phytohormone analysis revealed significantly higher basal levels of 12-oxo-phytodienoic acid, a precursor in the jasmonic acid biosynthesis pathway, in the sorghum SCA-tolerant SC35 plants. Salicylic acid accumulation appeared as a generalized plant response to aphids in sorghum plants, however, SCA feeding-induced salicylic acid levels were unaltered in the sorghum tolerant genotype. Conversely, basal levels of abscisic acid and aphid feeding-induced cytokinins were accumulated in the SCA-tolerant sorghum genotype. Our findings imply that the aphid-tolerant sorghum genotype tightly controls the relationship among phytohormones, as well as provide significant insights into the underlying mechanisms that contribute to plant tolerance to sap-sucking aphids.
Journal Article
Utilizing genetic variation in perennial sorghum to improve host plant resistance to aphids
2025
With growing concerns over the sustainability of conventional farming systems, perennial crops offer an environmentally friendly and resilient alternative for long-term agricultural production. Perennial grain crops provide numerous benefits, such as low input investment, reduced tillage, soil conservation, better carbon sequestration, sustainable yields, and enhanced biodiversity support. Sorghum (
Sorghum bicolor
) is the fifth most-grown cereal crop grown for food, fuel, and food grain in the world. The development of perennial sorghum offers a substitute for traditional annual sorghum crops by providing long-term environmental, economic, and agronomic benefits. Sugarcane aphid (SCA;
Melanaphis sacchari
), a phloem-feeder, is considered a major threat to sorghum production. Since its first report in 2013, it caused $40.95 million in losses in South Texas alone by 2015, accounting for about 19% of the total value of sorghum production in the region. In this study, we screened diverse perennial sorghum genotypes using no-choice and choice assays to determine their innate antibiosis and antixenosis resistance levels to SCAs. Based on aphid reproduction and plant damage rating, no-choice bioassay classified the 43 perennial sorghum genotypes into four clusters: highly susceptible, moderately susceptible, moderately resistant, and highly resistant. To further investigate the resistance mechanisms, we selected two genotypes, X999 > R485 (SCA-resistant) and PR376 ~ Tift241 (SCA-susceptible) that showed the greatest variation in resistance to SCA, for subsequent experiments. Choice bioassay results indicated that aphids chose PR376 ~ Tift241 for settlement, whereas no significant preference was observed for X999 > R485 compared to the control genotype. Electrical penetration graph (EPG) results demonstrated that aphids feeding on the SCA-resistant genotype spent significantly less time in the phloem phase than the susceptible genotype and control plants. The identification of SCA-resistant perennial sorghum genotypes will be valuable for future sorghum breeding programs in managing this economically important pest.
Journal Article
Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids
by
Grover, Sajjan
,
Sattler, Scott E.
,
Louis, Joe
in
Agricultural production
,
Animal Genetics and Genomics
,
Aphididae
2023
Background
The sugarcane aphid (SCA;
Melanaphis sacchari
) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance.
Results
We used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors.
Conclusions
In summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory.
Journal Article
Transcriptomic profiling provides molecular insights into tolerance mechanisms in wheat to wheat streak mosaic virus (WSMV)
by
Rushton, Jennifer
,
Nachappa, Punya
,
Broders, Kirk
in
Abscisic acid
,
Agricultural practices
,
Analysis
2025
Background
Wheat curl mites (WCM) are arthropod pests that pose significant threats to wheat production by causing direct damage through feeding and transmitting viruses, such as wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV), and High Plains wheat mosaic virus (HPWMoV). Management of the WCM–WSMV disease complex has relied on strategies such as controlling volunteer wheat, delaying planting, and using wheat varieties resistant to the mite and the viruses. However, the emergence of virulent WCM populations and resistance-breaking isolates of WSMV underscores the urgent need to develop more diverse and durable sources of resistance.
Results
Over a two-year period of field screening, we found that a commercial wheat cultivar, Hatcher, with no known sources of resistance, consistently produced higher yields under high WSMV disease pressure, outperforming varieties that carry the WSMV and mite resistance genes. To investigate the mechanisms underlying the apparent tolerance in Hatcher, we compared its response to WCM and WSMV infection to a susceptible genotype, CO15D173R. Transcriptomic analysis revealed a nuanced interplay between plant defense and growth in Hatcher, with upregulation of genes related to jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) pathways, indicating a coordinated defense response. Notably, activation of lignin biosynthesis genes in Hatcher points to a potential role of cell wall strengthening in deterring WCM transmission of WSMV. Additionally, the regulation of genes involved in growth-related hormonal pathways, such as gibberellic acid (GA) and brassinosteroids (BR), highlights Hatcher’s ability to maintain growth under disease pressure.
Conclusions
Our findings provide insight into the intricate network of phytohormones, growth-defense trade-offs, and cell wall modifications contributing to Hatcher’s potential tolerance to WCM and WSMV. This knowledge can inform the development of tolerant wheat varieties and enhance integrated pest management strategies, ultimately safeguarding wheat production.
Journal Article
Plant Tolerance: A Unique Approach to Control Hemipteran Pests
by
Chapman, Kaitlin
,
Louis, Joe
,
Koch, Kyle G.
in
Agricultural production
,
Aleyrodidae
,
Antibiotics
2016
Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.
Journal Article
12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid
by
Huang, Pei-Cheng
,
Koch, Kyle G.
,
Williams, W. Paul
in
benzoxazinoids
,
callose
,
conjugated linoleic acid
2019
The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.
Journal Article
Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids
2013
The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.
Journal Article
Brown midrib (BMR) and plant age impact fall armyworm (Spodoptera frugiperda) growth and development in sorghum-sudangrass (Sorghum x drummondii)
2024
Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW;
Spodoptera frugiperda
) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.
Journal Article
Nationwide assessment of leadership development for graduate students in the agricultural plant sciences
by
Burnham, Ella
,
Louis, Joe
,
Everhart, Sydney
in
Academic careers
,
Agricultural industry
,
Agricultural production
2023
Leadership development is a universally important goal across the agricultural plant science disciplines. Although previous studies have identified a need for leadership skills, less is known about leadership skill development in graduate programs. To address this, we constructed a mixed-method study to identify the most significant graduate school leadership experiences of scientists in the agricultural plant science disciplines. The survey was deployed to 6,728 people in the U.S. and received 1,086 responses (16.1% response rate). The majority of respondents reported that they were from one of the major agricultural states and employed at one of the agricultural plant science related doctoral universities, industries, or government. Results from this survey suggest that recent graduates were more engaged in graduate school activities that offered leadership development. Key experiences in graduate school were also identified that may be used to develop future leaders. Additionally, respondents reported the greatest barrier to providing leadership development for graduate students was that it is not part of their program curriculum, however current graduate students responded differently, and identifying lack of funding to support experiences as the greatest barrier. This survey also identified the top ranked professional skills considered most important for effective leaders in agricultural plant sciences as well as respondent-driven recommendations on how graduate programs can improve leadership development. Collectively, these results can be used in the future to identify priorities for skill development and opportunities for leadership training among graduate students within the plant science disciplines.
Journal Article
Wheat transcriptomic responses to extended feeding by wheat curl mites
by
Louis, Joe
,
Luong, Tran Kim Ngan
,
Hein, Gary
in
631/449/2169
,
631/449/2661
,
Agricultural production
2022
The economic importance of wheat and its contribution to human and livestock diets has been already demonstrated. However, wheat production is impacted by pests that induce yield reductions. Among these pests, wheat curl mite (WCM,
Aceria tosichella
Keifer) impacts wheat all around the world. WCM are tiny pests that feed within the whorl of developing leaves, and their feeding causes leaf curling by preventing them from unfurling. The curling of the leaves provides a protective niche for the WCM. Additionally, WCM are also the vector of serious viruses in wheat. Little is known regarding the impact of the WCM on wheat transcriptome, and to date, only one article has been published describing the wheat transcriptomic changes after 1 day of WCM feeding. To better understand the wheat transcriptome variation after extended feeding by WCM [10 days post infestation (dpi)], we used an RNA-seq approach. We collected WCM-infested and uninfested leaves from two wheat cultivars: Byrd (WCM resistant) and Settler CL (WCM susceptible) at 10 dpi. Our transcriptomic analysis revealed the common and specific transcriptomic variations in WCM resistant and susceptible wheat cultivars, chromosome 3D specific location of the differentially expressed genes with functions involved in defense and stress response, and also identified the gene functions related to lipid signaling and membrane integrity, and phytohormone pathways potentially contributing to WCM resistance. Collectively, our study provides important insights on wheat defense mechanisms against WCM after extended feeding.
Journal Article