Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Lozano-Cortés, Diego"
Sort by:
On the origin of endemic species in the Red Sea
AIM: The geological and palaeo‐climatic forces that produced the unique biodiversity in the Red Sea are a subject of vigorous debate. Here, we review evidence for and against the hypotheses that: (1) Red Sea fauna was extirpated during glacial cycles of the Pleistocene and (2) coral reef fauna found refuge within or just outside the Red Sea during low sea level stands when conditions were inhospitable. LOCATION: Red Sea and Western Indian Ocean. METHODS: We review the literature on palaeontological, geological, biological and genetic evidence that allow us to explore competing hypotheses on the origins and maintenance of shallow‐water reef fauna in the Red Sea. RESULTS: Palaeontological (microfossil) evidence indicates that some areas of the central Red Sea were devoid of most plankton during low sea level stands due to hypersaline conditions caused by almost complete isolation from the Indian Ocean. However, two areas may have retained conditions adequate for survival: the Gulf of Aqaba and the southern Red Sea. In addition to isolation within the Red Sea, which separated the northern and southern faunas, a strong barrier may also operate in the region: the cold, nutrient‐rich water upwelling at the boundary of the Gulf of Aden and the Arabian Sea. Biological data are either inconclusive or support these putative barriers and refugia, but no data set, that we know of rejects them. Genetic evidence suggests that many endemic lineages diverged from their Indian Ocean counterparts long before the most recent glaciations and/or are restricted to narrow areas, especially in the northern Red Sea. MAIN CONCLUSIONS: High endemism observed in the Red Sea and Gulf of Aden appears to have multiple origins. A cold, nutrient‐rich water barrier separates the Gulf of Aden from the rest of the Arabian Sea, whereas a narrow strait separates the Red Sea from the Gulf of Aden, each providing potential isolating barriers. Additional barriers may arise from environmental gradients, circulation patterns and the constriction at the mouth of the Gulf of Aqaba. Endemics that evolved within the Red Sea basin had to survive glacial cycles in relatively low salinity refugia. It therefore appears that the unique conditions in the Red Sea, in addition to those characteristics of the Arabian Peninsula region as a whole, drive the divergence of populations via a combination of isolation and selection.
Differential spatio-temporal responses of Red Sea coral reef benthic communities to a mass bleaching event
Understanding how coral reefs respond to disturbances is fundamental to assessing their resistance and resilience, particularly in the context of climate change. Due to the escalating frequency and intensity of coral bleaching events, it is essential to evaluate spatio-temporal responses of coral reef communities to disentangle the mechanisms underlying ecological changes. Here, we used benthic data collected from 59 reefs in the Red Sea over five years (2014–2019), a period that encompasses the 2015/2016 mass bleaching event. Reefs were located within three different geographic regions with different environmental settings: north (Duba; Al Wajh), central (Jeddah; Thuwal), and south (Al Lith; Farasan Banks; Farasan Islands). Coral community responses were region-specific, with communities in the south being more promptly affected than those in the northern and central regions, with hard and soft coral cover dropping drastically in several reefs from around > 40% to < 5% two years after bleaching. Coral bleaching effects were particularly evident in the decrease of cover in branching corals. Overall, we documented a shift towards a dominance of macroalgae, turf algae, and crustose coralline algae (CCA). Using remote sensing data, we analyzed sea surface temperature (SST) regimes at the study sites to infer potential drivers of changes in benthic composition. Both SST and Degree Heating Weeks (DHW) only partially aligned with the responses of benthic communities, highlighting the need for more accurate predictors of coral bleaching in the Red Sea. In times of intense coastal development along Saudi Arabia’s Red Sea coast, our study provides crucial baseline information on developments in coral reef community composition, as well as to guide decision-making, namely restoration efforts.
Cross shelf benthic biodiversity patterns in the Southern Red Sea
The diversity of coral reef and soft sediment ecosystems in the Red Sea has to date received limited scientific attention. This study investigates changes in the community composition of both reef and macrobenthic communities along a cross shelf gradient. Coral reef assemblages differed significantly in species composition and structure with location and depth. Inner shelf reefs harbored less abundant and less diverse coral assemblages with higher percentage macroalgae cover. Nutrient availability and distance from the shoreline were significantly related to changes in coral composition and structure. This study also observed a clear inshore offshore pattern for soft sediment communities. In contrast to the coral reef patterns the highest diversity and abundance of soft sediment communities were recorded at the inshore sites, which were characterized by a higher number of opportunistic polychaete species and bivalves indicative of mild disturbance. Sediment grain size and nutrient enrichment were important variables explaining the variability. This study aims to contribute to our understanding of ecosystem processes and biodiversity in the Red Sea region in an area that also has the potential to provide insight into pressing topics, such as the capacity of reef systems and benthic macrofaunal organisms to adapt to global climate change.
Biodiversity patterns of the coral reef cryptobiota around the Arabian Peninsula
The Arabian Peninsula accounts for approximately 6% of the world’s coral reefs. Some thrive in extreme environments of temperature and salinity. Using 51 Autonomous Reef Monitoring Structure (ARMS), a standardized non-destructive monitoring device, we investigated the spatial patterns of coral reef cryptobenthic diversity in four ecoregions around the Arabian Peninsula and analyzed how geographical and/or environmental drivers shape those patterns. The mitochondrial cytochrome c oxidase subunit I (COI) gene was used to identify Amplicon Sequence Variants and assign taxonomy of the cryptobenthic organisms collected from the sessile and mobile fractions of each ARMS. Cryptobenthic communities sampled from the two ecoregions in the Red Sea showed to be more diverse than those inhabiting the Arabian (Persian) Gulf and the Gulf of Oman. Geographic distance revealed a stronger relationship with beta diversity in the Mantel partial correlation than environmental distance. However, the two mobile fractions (106–500 µm and 500–2000 µm) also had a significant correlation between environmental distance and beta diversity. In our study, dispersal limitations explained the beta diversity patterns in the selected reefs, supporting the neutral theory of ecology. Still, increasing differences in environmental variables (environmental filtering) also had an effect on the distribution patterns of assemblages inhabiting reefs within short geographic distances. The influence of geographical distance in the cryptofauna assemblages makes these relevant, yet usually ignored, communities in reef functioning vulnerable to large scale coastal development and should be considered in ecosystem management of such projects.
An examination of introgression and incomplete lineage sorting among three closely related species of chocolate‐dipped damselfish (genus: Chromis)
Aim To determine the impact of ecological and environmental histories on the evolution of coral reef damselfishes at two adjacent marine biogeographic suture zones. Location Indo‐West Pacific, notably including two suture zones: Socotra and Christmas and Cocos/Keeling Islands. Taxon Chromis dimidiata, Chromis margaritifer, and Chromis fieldi. Methods We utilized a combination of nuclear and mitochondrial genetic markers in addition to visual abundance survey data of these fishes. Results Despite genetic patterns consistent with incomplete lineage sorting and relatively low genetic differentiation among the three studied Chromis species, there is evidence of hybridization between C. margaritifer and C. fieldi at Christmas Island based on molecular and visual identification. Introgression appears to be spreading westwards to other C. fieldi populations based on COI haplotype comparison. Moreover, the genetic distance between C. margaritifer and C. fieldi suggests that Pleistocene sea‐level fluctuations may have contributed to allopatric divergence and secondary contact between these two closely related species. Main conclusions Our study highlights that evolutionary processes in coral reef fishes operate differently between suture zones, possibly due to different ecological and environmental predispositions regulating secondary contact of sister species. While secondary contact likely led to hybridization and introgression at Christmas and Cocos/Keeling Islands, none of those processes seem present at Socotra for the chocolate‐dipped damselfish. This difference is likely due to an environmental barrier caused by hydrodynamic regimes in the Gulf of Aden. We highlight that evolutionary processes operate differently on coral reef damselfishes at two biogeographically, adjacent marine suture zones (Socotra and Christmas and Cocos/Keeling Islands) putatively due to different ecological and environmental predispositions regulating secondary contact of sister species. Therefore, samples of the three species of “chocolate‐dipped” Chromis: Chromis dimidiata, C. fieldi, and C. margaritifer were collected within their distribution ranges (with special attention on potential hybrids), and genetically analyzed combining mitochondrial and nuclear markers. Our results include population structure of the chocolate‐dipped Chromis across the Indo‐West Pacific (including the Red Sea) and further hypothesize on putative forces behind evolutionary processes at marine suture zones.
Advancing ecological assessment of the Arabian Gulf through eDNA metabarcoding: opportunities, prospects, and challenges
The Arabian Gulf (hereafter ‘the Gulf’) is renowned for its unique ecological characteristics and distinct marine life. It offers a diverse range of ecosystems that have adapted to the impacts posed by natural stress and human activities. Regular biomonitoring and diversity assessments are necessary to document the health of the Gulf ecosystem and to implement appropriate measures for effective conservation and management. Recently, environmental DNA (eDNA), a total pool of DNA isolated from environmental samples, has emerged as a highly effective tool for ecological studies. This review explores the opportunities, prospects, and challenges associated with employing eDNA metabarcoding in the ecological assessment and biomonitoring of the Gulf. It provides an overview of the status of the Gulf ecosystem and discusses the potential applications of eDNA metabarcoding in assessing biodiversity, monitoring invasive species, and evaluating ecosystem health. Additionally, the investigation addresses the challenges inherent in implementing this technique, considering environmental complexities, methodological intricacies, and data interpretation. Overall, this review emphasizes the immense potential of eDNA metabarcoding in advancing ecological assessment in the Gulf and calls for further research and collaboration to harness its benefits in this unique marine ecosystem.
review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea
AIM: The Red Sea is characterised by a unique fauna and historical periods of desiccation, hypersalinity and intermittent isolation. The origin and contemporary composition of reef‐associated taxa in this region can illuminate biogeographical principles about vicariance and the establishment (or local extirpation) of existing species. Here we aim to: (1) outline the distribution of shallow water fauna between the Red Sea and adjacent regions, (2) explore mechanisms for maintaining these distributions and (3) propose hypotheses to test these mechanisms. LOCATION: Red Sea, Gulf of Aden, Arabian Sea, Arabian Gulf and Indian Ocean. METHODS: Updated checklists for scleractinian corals, fishes and non‐coral invertebrates were used to determine species richness in the Red Sea and the rest of the Arabian Peninsula and assess levels of endemism. Fine‐scale diversity and abundance of reef fishes within the Red Sea were explored using ecological survey data. RESULTS: Within the Red Sea, we recorded 346 zooxanthellate and azooxanthellate scleractinian coral species of which 19 are endemic (5.5%). Currently 635 species of polychaetes, 211 echinoderms and 79 ascidians have been documented, with endemism rates of 12.6%, 8.1% and 16.5% respectively. A preliminary compilation of 231 species of crustaceans and 137 species of molluscs include 10.0% and 6.6% endemism respectively. We documented 1071 shallow fish species, with 12.9% endemic in the entire Red Sea and 14.1% endemic in the Red Sea and Gulf of Aden. Based on ecological survey data of endemic fishes, there were no major changes in species richness or abundance across 1100 km of Saudi Arabian coastline. MAIN CONCLUSIONS: The Red Sea biota appears resilient to major environmental fluctuations and is characterized by high rates of endemism with variable degrees of incursion into the Gulf of Aden. The nearby Omani and Arabian Gulfs also have variable environments and high levels of endemism, but these are not consistently distinct across taxa. The presence of physical barriers does not appear to explain species distributions, which are more likely determined by ecological plasticity and genetic diversity.
Checklist of barnacles (Crustacea; Cirripedia: Thoracica) from the Colombian Pacific
A checklist of thoracican barnacles from the Colombian Pacific is presented. Using published records, samples deposited in collections, and field observations, 16 barnacle taxa were identified and reported. With this information, the number of thoracican barnacles increases to 24 for the Colombian coasts (11 taxa exclusive to the Pacific coast, 8 exclusive to the Atlantic coast and 5 shared between both coasts). Among the barnacles reported in this work, four are pelagic and four are invasive; two of the latter were introduced from the Atlantic to the Pacific and two from the Pacific to the Atlantic.
Isolation and characterization of 29 microsatellite markers for the bumphead parrotfish, Bolbometopon muricatum, and cross amplification in 12 related species
We isolated and characterized 29 microsatellite loci for the bumphead parrotfish, Bolbometopon muricatum , a wide-ranging parrotfish listed as vulnerable by the International Union for Conservation of Nature (IUCN). The 29 loci were tested on 95 individuals sampled from the Solomon Islands. The number of alleles ranged from two to ten. Evidence of linkage disequilibrium was found for only one pair of loci (Bm54 and Bm112). Two loci (Bm20 and Bm119) showed significant departure from Hardy-Weinberg equilibrium. We also tested each locus for amplification and polymorphism on 11 other scarine labrid species and one labrid species. Amplification success ranged from zero to ten loci per species. These microsatellite loci are the first specific set for B. muricatum and will be a useful tool for assessing genetic population structure, genetic diversity, and parentage in future studies.
Growth patterns of specialized reef fishes distributed across the Red Sea to Gulf of Aden
Determining how growth rates and body size vary spatially and among reef fish species is important to understanding functional traits and demographic trade-offs. Variability in reef fish growth trajectories may be influenced by intrinsic (e.g., biological, phylogenetic) and extrinsic factors (e.g., environmental), as well as their interaction via ecological processes. To assess interspecific variation in these traits, we estimated age and growth for a guild of butterflyfishes sampled from reefs spanning ~ 10˚ degrees of latitude in the Red Sea to the adjacent Gulf of Aden. This study region was chosen because it spans environmental gradients known to influence fish life history traits and allowed for comparisons between regional versus more widespread butterflyfish species. Across the 10 study species, we found significant interspecific differences in growth. This finding contrasted with almost no intraspecific differences between populations across the study region. Moreover, we found that maximum body size was significantly correlated with the phylogenetic placement of the butterflyfish species. These patterns suggest that intrinsic factors and a high degree of ecological specialization may elicit spatially conservative demographic profiles, even when faced with considerable environmental variation across a region.