Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
278 result(s) for "Lu, Austin"
Sort by:
Original antigenic sin responses to Betacoronavirus spike proteins are observed in a mouse model, but are not apparent in children following SARS-CoV-2 infection
The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.
Serologic responses to COVID-19 vaccination in children with history of multisystem inflammatory syndrome (MIS-C)
Understanding the serological responses to COVID-19 vaccination in children with history of MIS-C could inform vaccination recommendations. We prospectively enrolled seven children hospitalized with MIS-C and measured SARS-CoV-2 binding IgG antibodies to spike protein variants longitudinally pre- and post-Pfizer-BioNTech BNT162b2 primary series COVID-19 vaccination. We found that SARS-CoV-2 variant cross-reactive IgG antibodies variably waned following acute MIS-C, but were significantly boosted with vaccination and maintained for up to 3 months. We then compared post-vaccination binding, pseudovirus neutralizing, and functional antibody-dependent cell-mediated cytotoxicity (ADCC) titers to the reference strain (Wuhan-hu-1) and Omicron variant (B.1.1.529) among previously healthy children (n = 16) and children with history of MIS-C (n = 7) or COVID-19 (n = 8). Despite the breadth of binding antibodies elicited by vaccination in all three groups, pseudovirus neutralizing and ADCC titers were significantly reduced to the Omicron variant.
Serologic and Cytokine Signatures in Children With Multisystem Inflammatory Syndrome and Coronavirus Disease 2019
Abstract Background The serologic and cytokine responses of children hospitalized with multisystem inflammatory syndrome (MIS-C) vs coronavirus disease 2019 (COVID-19) are poorly understood. Methods We performed a prospective, multicenter, cross-sectional study of hospitalized children who met the Centers for Disease Control and Prevention case definition for MIS-C (n = 118), acute COVID-19 (n = 88), or contemporaneous healthy controls (n = 24). We measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) immunoglobulin G (IgG) titers and cytokine concentrations in patients and performed multivariable analysis to determine cytokine signatures associated with MIS-C. We also measured nucleocapsid IgG and convalescent RBD IgG in subsets of patients. Results Children with MIS-C had significantly higher SARS-CoV-2 RBD IgG than children with acute COVID-19 (median, 2783 vs 146; P < .001), and titers correlated with nucleocapsid IgG. For patients with MIS-C, RBD IgG titers declined in convalescence (median, 2783 vs 1135; P = .010) in contrast to patients with COVID-19 (median, 146 vs 4795; P < .001). MIS-C was characterized by transient acute proinflammatory hypercytokinemia, including elevated levels of interleukin (IL) 6, IL-10, IL-17A, and interferon gamma (IFN-γ). Elevation of at least 3 of these cytokines was associated with significantly increased prevalence of prolonged hospitalization ≥8 days (prevalence ratio, 3.29 [95% CI, 1.17–9.23]). Conclusions MIS-C was associated with high titers of SARS-CoV-2 RBD IgG antibodies and acute hypercytokinemia with IL-6, IL-10, IL-17A, and IFN-γ.
Limited induction of SARS-CoV-2–specific T cell responses in children with multisystem inflammatory syndrome compared with COVID-19
Why multisystem inflammatory syndrome in children (MIS-C) develops after SARS-CoV-2 infection in a subset of children is unknown. We hypothesized that aberrant virus-specific T cell responses contribute to MIS-C pathogenesis. We quantified SARS-CoV-2-reactive T cells, serologic responses against major viral proteins, and cytokine responses from plasma and peripheral blood mononuclear cells in children with convalescent COVID-19, in children with acute MIS-C, and in healthy controls. Children with MIS-C had significantly lower virus-specific CD4+ and CD8+ T cell responses to major SARS-CoV-2 antigens compared with children convalescing from COVID-19. Furthermore, T cell responses in participants with MIS-C were similar to or lower than those in healthy controls. Serologic responses against spike receptor binding domain (RBD), full-length spike, and nucleocapsid were similar among convalescent COVID-19 and MIS-C, suggesting functional B cell responses. Cytokine profiling demonstrated predominant Th1 polarization of CD4+ T cells from children with convalescent COVID-19 and MIS-C, although cytokine production was reduced in MIS-C. Our findings support a role for constrained induction of anti-SARS-CoV-2-specific T cells in the pathogenesis of MIS-C.
Intent to Vaccinate SARS-CoV-2 Infected Children in US Households: A Survey
A paucity of data exists evaluating a guardian’s intent to vaccinate their child against COVID-19 in the United States. We administered 102 first (April–November 2020) and 45 second (December–January 2020–2021) surveys to guardians of children (<18 years) who had a laboratory-confirmed diagnosis of COVID-19 and assessed their intent to give a COVID-19 vaccine to their child, when one becomes available. The first and second surveys of the same cohort of guardians were conducted before and following the press releases detailing the adult Pfizer-BioNTech and Moderna Phase 3 results. Both surveys included an intent-to-vaccinate question using the subjective language of “if a safe and effective vaccine” became available, and a second question was added to second surveys using the objective language of “would prevent 19 of 20 people from getting disease”. When using subjective language, 24 of 45 (53%) guardians endorsed vaccine administration for their children in the first survey, which decreased to 21 (46%) in the second survey. When adding objective language, acceptance of vaccination increased to 31 (69%, p = 0.03). Common reasons for declining vaccination were concerns about adverse effects and/or vaccine safety. Providing additional facts on vaccine efficacy increased vaccine acceptance. Evidence-based strategies are needed to increase pediatric COVID-19 vaccine uptake.
Screening for malaria antigen and anti-malarial IgG antibody in forcibly-displaced Myanmar nationals: Cox’s Bazar district, Bangladesh, 2018
Background Several refugee settlements in Bangladesh have provided housing and medical care for the forcibly-displaced Myanmar nationals (FDMN, also known as Rohingya) population. The identification of malaria infection status in the refugee settlements is useful in treating infected persons and in developing malaria prevention recommendations. Assays for Plasmodium antigens and human IgG against Plasmodium parasites can be used as indicators to determine malaria infection status and exposure. Methods Dried blood spot (DBS) samples (N = 1239) from a household survey performed April–May 2018 in three settlements in Cox’s Bazar district, Bangladesh were utilized for a sample population of children from ages 1–14 years of age. The samples were tested using a bead-based multiplex antigen assay for presence of the pan- Plasmodium antigen aldolase as well as Plasmodium falciparum histidine rich protein 2 (HRP2). A bead-based multiplex assay was also used to measure human IgG antibody response to P. falciparum, Plasmodium malariae, and Plasmodium vivax merozoite surface protein 1 antigen (MSP1) isoforms, and P. falciparum antigens LSA1, CSP, and GLURP-R0. Results There were no detectable Plasmodium antigens in any samples, suggesting no active malaria parasite infections in the tested children. IgG seroprevalence was highest to P. vivax (3.1%), but this was not significantly different from the percentages of children antibody responses to P. falciparum (2.1%) and P. malariae (1.8%). The likelihood of an anti- Plasmodium IgG response increased with age for all three malaria species. Evidence of exposure to any malaria species was highest for children residing 8–10 months in the settlements, and was lower for children arriving before and after this period of time. Conclusions Absence of Plasmodium antigen in this population provides evidence that children in these three Bangladeshi refugee settlements did not have malaria at time of sampling. Higher rates of anti-malarial IgG carriage from children who were leaving Myanmar during the malaria high-transmission season indicate these migrant populations were likely at increased risk of malaria exposure during their transit.
Original antigenic sin responses to Betacoronavirus spike proteins are observed in a mouse model, but are not apparent in children following SARS-CoV-2 infection
The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.
Original antigenic sin responses to Betacoronavirus spike proteins are observed in a mouse model, but are not apparent in children following SARS-CoV-2 infection
The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.
Mechatronic Generation of Datasets for Acoustics Research
We address the challenge of making spatial audio datasets by proposing a shared mechanized recording space that can run custom acoustic experiments: a Mechatronic Acoustic Research System (MARS). To accommodate a wide variety of experiments, we implement an extensible architecture for wireless multi-robot coordination which enables synchronized robot motion for dynamic scenes with moving speakers and microphones. Using a virtual control interface, we can remotely design automated experiments to collect large-scale audio data. This data is shown to be similar across repeated runs, demonstrating the reliability of MARS. We discuss the potential for MARS to make audio data collection accessible for researchers without dedicated acoustic research spaces.