Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
55
result(s) for
"Lu, Guixia"
Sort by:
Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials
by
Han, Hecheng
,
Wen, Hongling
,
Wang, Zhou
in
Antibacterial materials
,
Bacteria
,
Biocompatibility
2022
HighlightsFabrication, characterizations and photothermal properties of MXenes are systematically described.Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed.Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated.The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes.
Journal Article
Positive temperature coefficient thermistors based on carbon nanotube/polymer composites
2014
In order to explore availability of carbon nanotube (CNT)-based positive temperature coefficient (PTC) thermistors in practical application, we prepared carbon nanotube (CNT) filled high density polyethylene (HDPE) composites by using conventional melt-mixing methods and investigated their PTC effects in details. The CNT-based thermistors exhibit much larger hold current and higher hold voltage, increasing by 129% in comparison with the commercial carbon black (CB) filled HDPE thermistors. Such high current-bearing and voltage-bearing capacity for the CNT/HDPE thermistors is mainly attributed to high thermal conductivity and heat dissipation of entangled CNT networks. Moreover, the CNT/HDPE thermistors exhibit rapid electrical response to applied voltages, comparable to commercial CB-based thermistors. In light of their high current-bearing capacity and quick response, the CNT-based thermistors have great potential to be used as high-performance thermistors in practical application, especially in some critical circumstances of high temperature, large applied currents and high applied voltages.
Journal Article
Research progress of novel magnetic two-dimensional carbon composites in photocatalytic degradation of pollutants: a review
by
Feng, Yuhao
,
Lu, Chenggang
,
Zhao, Xiaona
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Carbon
2023
With the improvement of economic level and the development of science and technology, the problem of water pollution needs to be solved now. Various water pollutants have a negative impact on nature and restrict its development. In recent years, photocatalysis is considered to be a promising wastewater treatment method. Two-dimensional carbon materials have become the hotspot of photocatalytic degradation of pollutants because of their excellent conductivity, large specific surface area, and good hydrophilicity. Nevertheless, it is very hard for these photocatalysts based on carbon materials to separate and recover from the system. For solving such a problem, the composition with magnetic components is an effective way which can facilitate separation and keep the catalytic activity of the samples. In this review, the main roles of magnetic carbon-based composites in the field of pollutant degradation are introduced, and their synthesis technology, classification, and application are summarized. In the end, the current challenges and prospects in this field are involved, aiming to provide useful insights and enlightments into the fields of pollutant treatment and photocatalytic degradation.
Journal Article
Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans
by
Li, Dongmei
,
Shen, Yongnian
,
Liu, Weida
in
Acids
,
Antifungal agents
,
Antifungal Agents - pharmacology
2016
Undecylenic acid can effectively control skin fungal infection, but the mechanism of its fungal inhibition is unclear. Hyphal growth of Candida albicans (C. albicans) and biofilm formation have been well recognized as important virulence factors for the initiation of skin infection and late development of disseminated infection. In this study, we seek to investigate antifungal mechanisms of undecylenic acid by evaluating the virulence factors of C. albicans during biofilm formation. We found that undecylenic acid inhibits biofilm formation of C. albicans effectively with optimal concentration above 3 mM. In the presence of this compound, the morphological transition from yeast to filamentous phase is abolished ultimately when the concentration of undecylenic acid is above 4 mM. Meanwhile, the cell surface is crumpled, and cells display an atrophic appearance under scanning electron microscopy even with low concentration of drug treatment. On the other hand, the drug treatment decreases the transcriptions of hydrolytic enzymes such as secreted aspartic protease, lipase, and phospholipase. Hyphal formation related genes, like HWP1, are significantly reduced in transcriptional level in drug-treated biofilm condition as well. The down-regulated profile of these genes leads to a poorly organized biofilm in undecylenic acid treated environment.
Journal Article
Silenced suppressor of cytokine signaling 1 (SOCS1) enhances the maturation and antifungal immunity of dendritic cells in response to Candida albicans in vitro
by
Li, Dongmei
,
Yin, Qingxin
,
Shen, Yongnian
in
Allergology
,
Animals
,
Antigen Presentation - genetics
2015
Dendritic cells (DCs) are known to play an important role in initiating and orchestrating antimicrobial immunity. Given the fact that candidiasis appears often in immunocompromised patients, it seems plausible that DCs hold the key to new antifungal strategies. One possibility to enhance the potency of DC-based immunotherapy is to silence the negative immunoregulatory pathways through the ablation suppressor of cytokine signaling suppressor 1 (SOCS1). Here, we deliver small interfering RNA (siRNA) against SOCS1 into murine bone marrow DCs, and as a consequence, we investigate the maturation/action of DCs and the subsequent T cell response after exposure to
C. albicans
. Our results show that the maturation of DCs (i.e., expressions of CD80, CD40, CD86, and MHC II) are significantly increased in the silenced SOCS1 treatment group after exposure to
C. albicans
. As a result, suppression of the SOCS1 promotes the greatest expression of IFN-γ and IL-12, and reduces IL-4 secretions, which induce CD4
+
cell Th1 differentiation but inactivate Th2 cell development. The responses of IL-6 and TNF-β consist of up-regulation in the presence of
C. albicans
, but this is not specific to SOCS1 silencing, suggesting that these cytokines are not regulated by the SOCS1 gene in fungal infections. We find Th17 differentiation is unchanged regardless of SOCS1 inhibition. The increase in phagocytosis and killing of
C. albicans
in SOCS1 gene-treated DCs indicate a role for this cytokine suppressor in innate immunity as well. In conclusion, our findings support the view that SOCS1 protein is a critical inhibitory molecule for controlling cytokine response and antigen presentation by DCs, thereby regulating the magnitude of innate and adaptive immunities by generating IFN-γ-production T cells (Th1)—but not Th17—from naïve CD4
+
T cells. Our study demonstrates that SOCS1 siRNA can serve as a useful vehicle to modulate the function of DCs against
C. albicans
infection.
Journal Article
Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference
2012
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.
Journal Article
Correlation between thyroid hormone sensitivity and diabetic peripheral neuropathy in euthyroid patients with type 2 diabetes mellitus
by
Liu, Xinming
,
Gang, Xiaokun
,
Sun, Meixin
in
692/163/2743/137
,
692/163/2743/137/138
,
692/617/375/430
2024
Previous studies have revealed that thyroid hormone (TH) levels are associated with the risk of diabetic peripheral neuropathy (DPN) in euthyroid patients with type 2 diabetes mellitus (T2DM). However, the relationship between TH sensitivity, a complementary method for assessing thyroid function, and DPN remains unclear. This study aimed to investigate the correlation between DPN and TH sensitivity in euthyroid patients with T2DM. Exactly 708 euthyroid adults with T2DM were retrospectively enrolled. The FT3/FT4 ratio was used to estimate peripheral TH sensitivity. Central TH sensitivity was assessed using the Thyrotroph T4 Resistance Index (TT4RI), Thyroid-Stimulating Hormone Index (TSHI), Thyroid Feedback Quantile-based Index (TFQI), and Parametric TFQI (PTFQI). DPN was assessed using neurologic symptoms, signs, and nerve conduction velocity tests. The relationship between DPN and TH sensitivity was examined using logistic regression analysis. We observed that an elevated FT3/FT4 ratio was associated with DPN (OR = 1.36, 95%CI: 1.13–1.63,
p
= 0.0012). For each standard deviation (SD) increase in the TT4RI, TSHI, TFQI, and PTFQI, the OR of DPN was 0.80 (95%CI: 0.68–0.94,
p
= 0.0078), 0.72 (95%CI: 0.60–0.86,
p
= 0.0002), 0.69 (95%CI: 0.58–0.83,
p
< 0.0001), and 0.69 (95%CI: 0.58–0.82,
p
< 0.0001), respectively. These results suggested that reduced central and peripheral TH sensitivity is associated with a decreased risk of developing DPN.
Journal Article
Genome-wide transcriptome analysis of the salt stress tolerance mechanism in Rosa chinensis
2018
Plants regulate responses to salt stress using biological pathways, such as signal perception and transduction, photosynthesis, and energy metabolism. Little is known about the genetics of salt tolerance in Rosa chinensis. Tineke and Hiogi are salt-tolerant and salt-sensitive varieties of R. chinensis, respectively, and are good choices for studying salt-tolerance genes. We studied leaf and root tissues from 1-year-old Hiogi and Tineke plants simultaneously grown under the same conditions. A 0.4%-mmol/L salt ion mixture was added to the basic growth medium. Illumina sequencing was used to identify differentially expressed transcripts. GO and KEGG pathway enrichment analyses were performed to identify differentially expressed genes. We identified many differentially expressed genes associated with salt tolerance. The abscisic acid-dependent signaling pathway was the main pathway that mediated the salt stress response in R. chinensis. Two pathways (plant hormone signal transduction and glutathione metabolism) were also active in salt stress responses in R. chinensis. The difference in salt tolerance in the cultivars was due to different gene sensitivity to salt in these two pathways. Roots also play a role in salt stress response. The effects of salt stress in the roots are eventually manifested in the leaves, causing changes in processes such as photosynthesis, which eventually result in leaf wilting. In Tineke, Snrk2, ABF, HSP, GSTs, and GSH1 showed high activity during salt stress, indicating that these genes are markers of salt tolerance.
Journal Article
Intensive Blood-Pressure Control in Patients with Type 2 Diabetes
by
Zheng, Ruizhi
,
Dai, Yuancheng
,
Kang, Zhiqiang
in
Aged
,
Antihypertensive Agents - administration & dosage
,
Antihypertensive Agents - adverse effects
2025
In this trial, patients with type 2 diabetes had a lower incidence of major cardiovascular outcomes with a systolic blood-pressure target of less than 120 mm Hg than with a target of less than 140 mm Hg.
Journal Article
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
2019
This double-blind, randomized trial compared canagliflozin with placebo in patients with type 2 diabetes and evidence of kidney disease that was treated with renin–angiotensin system blockade. The canagliflozin group had a lower risk of kidney disease progression or cardiovascular events than the placebo group.
Journal Article