Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
83
result(s) for
"Lu, Haijiao"
Sort by:
Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer
2021
Background
We aimed to comprehensively evaluate the immunologic landscape at baseline and upon chemotherapy in cervical cancer. The information should aid ongoing clinical investigations of checkpoint blockade immunotherapies in this disease setting.
Methods
A series of 109 cervical carcinoma patients was retrospectively assayed before and after neoadjuvant chemotherapy. Tumour-infiltrating immune markers (CD3, CD4, CD8, CD20, CD56, CD68, PD-1, PD-L1) were assessed by immunohistochemistry. RNA sequencing analysis was performed on matched pre- and post-treatment fresh-frozen tissues.
Results
At diagnosis, diverse immune cell types including CD20+ B cells, CD3+ T cells, CD56+ natural killer (NK) cells, and CD68+ macrophages were detected in different proportions of cervical carcinoma. Unsupervised hierarchical clustering evidently showed that CD4+ and CD8+ T cell abundance correlated with PD-L1 expression. Based on the immune infiltration patterns, the patients could be stratified into four groups with prognostic relevance, namely, ‘immuno-active’, ‘immuno-medial’, ‘immuno-NK’, and ‘immuno-deficient’. Neoadjuvant chemotherapy was associated with increased CD4, CD8, CD20, and CD56 signals, most prominently in good responders. Transcriptomic data corroborated the improved anticancer immunity and identified immunosuppressive CD200 upregulation following chemotherapeutic intervention.
Conclusions
A subset of cervical cancer harbours active immune microenvironment, and chemotherapy treatment may further exert locoregional immunostimulation. Immune checkpoint inhibitors as combination or maintenance therapies warrant future exploration in clinic.
Journal Article
Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane
by
Liu, Gang
,
Zhang, Shujun
,
Sasani, Alireza
in
639/301/299/890
,
639/4077/909/4101/4050
,
639/638/439/890
2024
A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO
4
) can create defect dipoles due to a disruption of symmetry. The modified photoelectrodes exhibit a strong correlation between charge separation and transfer capability and external electrical poling, which is not seen in unmodified samples. Applying poling at −150 Volt boosts charge separation and transfer efficiency to over 90%. A photocurrent density of 6.3 mA cm
−2
is achieved on the photoelectrode after loading with a nickel-iron oxide-based cocatalyst. Furthermore, using generated holes for methane partial oxidation can produce methanol with a Faradaic efficiency of approximately 6%. These findings provide valuable insights into the photoelectrocatalytic conversion of greenhouse gases into valuable chemical products.
The design of effective photoelectrodes for solar energy conversion relies on optimizing charge separation and transfer, which remain a challenge. In this study, the authors demonstrate that an external poling treatment can create a built-in electric field in bismuth vanadate photoelectrodes, thereby facilitating efficient charge transport for water oxidation and methane conversion.
Journal Article
An Overview of Nanomaterials for Water and Wastewater Treatment
2016
Due to the exceptional characteristics which resulted from nanoscale size, such as improved catalysis and adsorption properties as well as high reactivity, nanomaterials have been the subject of active research and development worldwide in recent years. Numerous studies have shown that nanomaterials can effectively remove various pollutants in water and thus have been successfully applied in water and wastewater treatment. In this paper, the most extensively studied nanomaterials, zero-valent metal nanoparticles (Ag, Fe, and Zn), metal oxide nanoparticles (TiO2, ZnO, and iron oxides), carbon nanotubes (CNTs), and nanocomposites are discussed and highlighted in detail. Besides, future aspects of nanomaterials in water and wastewater treatment are discussed.
Journal Article
Recent Progress on Nanostructures for Drug Delivery Applications
by
Bao, Ying
,
Wang, Ting
,
Zhong, Jian
in
Chemical bonds
,
Deoxyribonucleic acid
,
Drug delivery systems
2016
With the rapid development of nanotechnology, the convergence of nanostructures and drug delivery has become a research hotspot in recent years. Due to their unique and superior properties, various nanostructures, especially those fabricated from self-assembly, are able to significantly increase the solubility of poorly soluble drugs, reduce cytotoxicity toward normal tissues, and improve therapeutic efficacy. Nanostructures have been successfully applied in the delivery of diverse drugs, such as small molecules, peptides, proteins, and nucleic acids. In this paper, the driving forces for the self-assembly of nanostructures are introduced. The strategies of drug delivery by nanostructures are briefly discussed. Furthermore, the emphasis is put on a variety of nanostructures fabricated from various building materials, mainly liposomes, polymers, ceramics, metal, peptides, nucleic acids, and even drugs themselves.
Journal Article
Immunotherapy combined with chemotherapy for patients with pulmonary large cell neuroendocrine carcinoma
2024
The efficacy of ICIs combined with chemotherapy or chemotherapy alone was evaluated according to the Immune-based Response Evaluation Criteria in Solid Tumors (iRECIST) and RECIST version 1.1, and the objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were determined. Median PFS and OS were assessed by the Kaplan–Meier (K–M) method, and the log-rank test was used to assess the differences in survival between the two groups. The median PFS of the EC group and the other group was both 6.5 months, and there was no significant difference in PFS between the two groups (P = 0.770) [Supplementary Figure 1A, http://links.lww.com/CM9/C93]. [...]our study suggests that immunotherapy should not be recommended for patients with PD-L1 ≤1%.
Journal Article
mTOR pathway gene mutations predict response to immune checkpoint inhibitors in multiple cancers
2022
Background
mTOR pathway is known to promote cancer malignancy and influence cancer immunity but is unknown for its role in immune checkpoint inhibitors (ICI) therapy.
Methods
Using Memorial Sloan-Kettering Cancer Center dataset (MSKCC), we extracted mTOR pathway gene mutations for stepwise Cox regression in 1661 cancer patients received ICI. We associated the mutation of the gene signature resulted from the stepwise Cox regression with the 1661 patients’ survival. Other 553 ICI-treated patients were collected from 6 cohorts for validation. We also performed this survival association in patients without ICI treatment from MSKCC as discovery (n = 2244) and The Cancer Genome Atlas (TCGA) as validation (n = 763). Pathway enrichment analysis were performed using transcriptome profiles from TCGA and IMvigor210 trial to investigate the potential mechanism.
Results
We identified 8 genes involved in mTOR pathway, including
FGFR2
,
PIK3C3
,
FGFR4
,
FGFR1
,
FGF3
,
AKT1
,
mTOR
, and
RPTOR
, resulted from stepwise Cox regression in discovery (n = 1661). In both discovery (n = 1661) and validation (n = 553), the mutation of the 8-gene signature was associated with better survival of the patients treated with ICI, which was independent of tumor mutation burden (TMB) and mainly attributed to the missense mutations. This survival association was not observed in patients without ICI therapy. Intriguingly, the mutation of the 8-gene signature was associated with increased TMB and PD1/PD-L1 expression. Immunologically, pathways involved in anti-tumor immune response were enriched in presence of this mutational signature in mTOR pathway, leading to increased infiltration of immune effector cells (e.g., CD8 + T cells, NK cells, and M1 macrophages), but decreased infiltration of immune inhibitory M2 macrophages.
Conclusions
These results suggested that mTOR pathway gene mutations were predictive of better survival upon ICI treatment in multiple cancers, likely by its association with enhanced anti-tumor immunity. Larger studies are warranted to validate our findings.
Journal Article
YY1 downregulation underlies therapeutic response to molecular targeted agents
2024
During targeted treatment, oncogene-addicted tumor cells often evolve from an initial drug-sensitive state through a drug-tolerant persister bottleneck toward the ultimate emergence of drug-resistant clones. The molecular basis underlying this therapy-induced evolutionary trajectory has not yet been completely elucidated. Here, we employed a multifaceted approach and implicated the convergent role of transcription factor Yin Yang 1 (YY1) in the course of diverse targeted kinase inhibitors. Specifically, pharmacological perturbation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway resulted in the downregulation of YY1 transcription, which subsequently resumed upon therapeutic escape. Failure to decrease YY1 subverted cytotoxic effects, whereas elimination of residual YY1 maximized anticancer efficacy and forestalled the emergence of drug resistance. Mechanistically, YY1 was uncovered to dictate cell cycle and autophagic programs. Immunohistochemical analysis on a wide spectrum of clinical specimens revealed that YY1 was ubiquitously expressed across lung adenocarcinomas and exhibited anticipated fluctuation in response to corresponding RTK/MAPK inhibition. These findings advance our understanding of targeted cancer management by highlighting YY1 as a determinant node in the context of genotype-directed agents.
Journal Article
Single-cell RNA-sequencing uncovers the dynamic changes of tumour immune microenvironment in advanced lung adenocarcinoma
by
Zhao, Chaoxian
,
Cheng, Lei
,
Chu, Tianqing
in
Adenocarcinoma of Lung - genetics
,
Cancer
,
Cells
2023
BackgroundThe heterogeneity of lung adenocarcinoma (LUAD) plays a vital role in determining the development of cancer and therapeutic sensitivity and significantly hinders the clinical treatment of LUAD.ObjectiveTo elucidate the cellular composition and reveal previously uncharacterised tumour microenvironment in LUAD using single-cell RNA-sequencing (scRNA-seq).MethodsTwo scRNA-seq datasets with 106 829 high-quality cells from 34 patients including 11 normal, 9 early (stage I and II) and 14 advanced (stage III and IV) LUAD were integrated and clustered to explore diagnostic and therapeutic cell populations and their biomarkers for diverse stages of LUAD. Three independent bulk RNA-seq datasets were used to validate the results from scRNA-seq analysis. The expression of marker genes for specific cell types in early and advanced LUAD was verified by immunohistochemistry (IHC).ResultsComprehensive cluster analysis identified that S100P+ epithelial and SPP1+ macrophage, positively related to poor outcomes, were preferentially enriched in advanced stage. Although the accumulation of KLRB1+CD8+ T cell and IGHA1+/IGHG1+ plasma cell both significantly associated the favourable prognosis, we also found KLRB1+CD8+ T cell decreased in advanced stage while IGHA1+/IGHG1+ plasma cells were increased. Cell-cell communication analysis showed that SPP1+ macrophage could interact with most of CD8+ subclusters through SPP1-CD44 axis. Furthermore, based on three independent bulk RNA-seq datasets, we built risk model with nine marker genes for specific cell subtypes and conducted deconvolution analysis, both supporting our results from scRNA-seq data. We finally validated the expression of four marker genes in early and advanced LUAD by IHC.ConclusionOur analyses highlight the molecular dynamics of LUAD epithelial and microenvironment and provide new targets to improve LUAD therapy.
Journal Article
Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol
2017
With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS2/Fe3O4/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these problems. MoS2 nanosheets (MNs) acted as an efficient support for nZVI and enriched the organic pollutants nearby, leading to an enhanced removal efficiency. Fe3O4 nanoparticles (NPs) could not only suppress the agglomeration and restacking of MNs, but also facilitate easy separation and recovery of the nanocomposites. The synergistic effect between MNs and Fe3O4 NPs effectively enhanced the reactivity and efficiency of nZVI. In the system, Cr(VI) was reduced to Cr(III) by nZVI in the nanocomposites, and Fe2+ produced in the process was combined with H2O2 to further remove 4-Chlorophenol (4-CP) through a Fenton reaction. Furthermore, the nanocomposites could be easily separated from wastewater by a magnet and be reused for at least five consecutive runs, revealing good reusability. The results demonstrate that the novel nanocomposites are highly efficient and promising for the simultaneous removal of Cr(VI) and 4-CP in wastewater.
Journal Article