Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
294
result(s) for
"Lu, Lihui"
Sort by:
Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe
2022
Optogenetic methods provide efficient cell-specific modulations, and the ability of simultaneous neural activation and inhibition in the same brain region of freely moving animals is highly desirable. Here we report bidirectional neuronal activity manipulation accomplished by a wireless, dual-color optogenetic probe in synergy with the co-expression of two spectrally distinct opsins (ChrimsonR and stGtACR2) in a rodent model. The flexible probe comprises vertically assembled, thin-film microscale light-emitting diodes with a lateral dimension of 125 × 180 µm
2
, showing colocalized red and blue emissions and enabling chronic in vivo operations with desirable biocompatibilities. Red or blue irradiations deterministically evoke or silence neurons co-expressing the two opsins. The probe interferes with dopaminergic neurons in the ventral tegmental area of mice, increasing or decreasing dopamine levels. Such bidirectional regulations further generate rewarding and aversive behaviors and interrogate social interactions among multiple mice. These technologies create numerous opportunities and implications for brain research.
Simultaneous neural activation and inhibition in the same brain region of animals is highly desirable. Here the authors report a wireless, dual-colour optogenetic probe with the co-expression of two spectrally distinct opsins to allow for bidirectional neuronal activity manipulation in a rodent model.
Journal Article
Control of locomotor speed, arousal, and hippocampal theta rhythms by the nucleus incertus
2020
Navigation requires not only the execution of locomotor programs but also high arousal and real-time retrieval of spatial memory that is often associated with hippocampal theta oscillations. However, the neural circuits for coordinately controlling these important processes remain to be fully dissected. Here we show that the activity of the neuromedin B (NMB) neurons in the nucleus incertus (NI) is tightly correlated with mouse locomotor speed, arousal level, and hippocampal theta power. These processes are reversibly suppressed by optogenetic inhibition and rapidly promoted by optogenetic stimulation of NI NMB neurons. These neurons form reciprocal connections with several subcortical areas associated with arousal, theta oscillation, and premotor processing. Their projections to multiple downstream stations regulate locomotion and hippocampal theta, with the projection to the medial septum being particularly important for promoting arousal. Therefore, NI NMB neurons functionally impact the neural circuit for navigation control according to particular brains states.
In addition to activation of locomotor circuits, navigation also requires regulation of arousal and spatial memory processes. Here the authors identify neuromedin B neurons in the nucleus incertus and their subcortical projections in controlling these various processes during navigation.
Journal Article
Super Enhancer Regulatory Gene FYB1 Promotes the Progression of T Cell Acute Lymphoblastic Leukemia by Activating IGLL1
by
Pan, Jian
,
Fang, Fang
,
Li, Xiaolu
in
Acute lymphoblastic leukemia
,
Acute myeloid leukemia
,
Adapter proteins
2023
Background. Arising from T progenitor cells, T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor, accounting for 15% of childhood ALL and 25% of adult ALL. Composing of putative enhancers in close genomic proximity, super enhancer (SE) is critical for cell identity and the pathogenesis of multiple cancers. Belonging to the cytosolute linker protein group, FYB1 is essential for TCR signaling and extensively studied in terms of tumor pathogenesis and metastasis. Dissecting the role of FYN binding protein 1 (FYB1) in T-ALL holds the potential to improve the treatment outcome and prognosis of T-ALL. Methods. In this study, SEs were explored using public H3K27ac ChIP-seq data derived from T-ALL cell lines, AML cell lines and hematopoietic stem and progenitor cells (HSPCs). Downstream target of FYB1 gene was identified by RNA-seq. Effects of shRNA-mediated downregulation of FYB1 and immunoglobulin lambda-like polypeptide 1 (IGLL1) on self-renewal of T-ALL cells were evaluated in vitro and/or in vivo. Results. As an SE-driven gene, overexpression of FYB1 was observed in T-ALL, according to the Cancer Cell Line Encyclopedia database. In vitro, knocking down FYB1 led to comprised growth and enhanced apoptosis of T-ALL cells. In vivo, downregulation of FYB1 significantly decreased the disease burden by suppressing tumor growth and improved survival rate. Knocking down FYB1 resulted in significantly decreased expression of IGLL1 that was also an SE-driven gene in T-ALL. As a downstream target of FYB1, IGLL1 exerted similar role as FYB1 in inhibiting growth of T-ALL cells. Conclusion. Our results suggested that FYB1 gene played important role in regulating self-renewal of T-ALL cells by activating IGLL1, representing a promising therapeutic target for T-ALL patients.
Journal Article
LMO2 promotes the development of AML through interaction with transcription co-regulator LDB1
2023
One of the characteristics of leukemia is that it contains multiple rearrangements of signal transduction genes and overexpression of non-mutant genes, such as transcription factors. As an important regulator of hematopoietic stem cell development and erythropoiesis, LMO2 is considered an effective carcinogenic driver in T cell lines and a marker of poor prognosis in patients with AML with normal karyotype. LDB1 is a key factor in the transformation of thymocytes into T-ALL induced by LMO2, and enhances the stability of carcinogenic related proteins in leukemia. However, the function and mechanism of LMO2 and LDB1 in AML remains unclear. Herein, the LMO2 gene was knocked down to observe its effects on proliferation, survival, and colony formation of NB4, Kasumi-1 and K562 cell lines. Using mass spectrometry and IP experiments, our results showed the presence of LMO2/LDB1 protein complex in AML cell lines, which is consistent with previous studies. Furthermore, in vitro and in vivo experiments revealed that LDB1 is essential for the proliferation and survival of AML cell lines. Analysis of RNA-seq and ChIP-Seq results showed that LDB1 could regulate apoptosis-related genes, including LMO2. In LDB1-deficient AML cell lines, the overexpression of LMO2 partially compensates for the proliferation inhibition. In summary, our findings revealed that LDB1 played an important role in AML as an oncogene, and emphasize the potential importance of the LMO2/LDB1 complex in clinical treatment of patients with AML.
Journal Article
A Novel BRD Family PROTAC Inhibitor dBET1 Exerts Great Anti-Cancer Effects by Targeting c-MYC in Acute Myeloid Leukemia Cells
2022
Acute myeloid leukemia (AML) represents an aggressive hematopoietic malignancy with a prognosis inferior to that of other leukemias. Recent targeted therapies offer new opportunities to achieve better treatment outcomes. However, due to the complex heterogeneity of AML, its prognosis remains dismal. In this study, we first identified the correlation between high expression of BRD4 and overall survival of patients with AML. Targeted degradation of BRD2, BRD3, and BRD4 proteins by dBET1, a proteolysis-targeting chimera (PROTAC) against the bromodomain and extra-terminal domain (BET) family members, showed cytotoxic effects on Kasumi (AML1-ETO), NB4 (PML-RARa), THP-1 (MLL-AF9), and MV4-11 (MLL-AF4) AML cell lines representing different molecular subtypes of AML. Furthermore, we determined that dBET1 treatment arrested cell cycling and enhanced apoptosis and c-MYC was identified as the downstream target. Collectively, our results indicated that dBET1 had broad anti-cancer effects on AML cell lines with different molecular lesions and provided more benefits to patients with AML.
Journal Article
BRD4 Inhibitor GNE-987 Exerts Anticancer Effects by Targeting Super-Enhancer-Related Gene LYL1 in Acute Myeloid Leukemia
2022
Background. AML (acute myeloid leukemia) is a common hematological malignancy in children with poor treatment effects and poor prognosis. Recent studies have shown that as a novel BRD4 (bromodomain containing 4) PROTACs (proteolysis targeting chimeras) degrader, GNE-987 can slow down the growth of various tumors and increase apoptosis, with promising clinical prospects. However, the function and molecular mechanism of GNE-987 in AML remain unclear. This study is aimed at investigating the therapeutic effect of GNE-987 on AML and its underlying mechanism. Methods. The association between BRD4 and AML was assessed by studying public databases. After GNE-987 was added to AML cells, cell proliferation slowed down, the cycle was disturbed, and apoptosis increased. Western blotting was used to detect BRD2 (bromodomain containing 2), BRD3 (bromodomain containing 3), BRD4, and PARP (poly ADP-ribose polymerase) proteins. The effect of GNE-987 on AML cells was analyzed in vivo. RNA-seq (RNA sequencing) and ChIP-seq (chromatin immunoprecipitation sequencing) validated the function and molecular pathways of GNE-987 in processing AML. Results. BRD4 expression was significantly elevated in pediatric AML samples compared with healthy donors. GNE-987 inhibited AML cell proliferation by inhibiting the cell cycle and inducing apoptosis. BRD2, BRD3, and BRD4 were consistent with decreased VHL (Von Hippel Lindau) expression in AML cells. In an AML xenograft model, GNE-987 significantly reduced the hepatosplenic infiltration of leukemia cells and increased the mouse survival time. Based on analysis of RNA-seq and ChIP-seq analyses, GNE-987 could target multiple SE- (super-enhancer-) related genes, including LYL1 (lymphoblastic leukemia 1), to inhibit AML. Conclusions. GNE-987 had strong antitumor activity in AML. GNE-987 could effectively inhibit the expression of SE-related oncogenes including LYL1 in AML. Our results suggested that GNE-987 had broad prospects in the treatment of AML.
Journal Article
Luteolin-7-O-β-d-Glucuronide Attenuated Cerebral Ischemia/Reperfusion Injury: Involvement of the Blood–Brain Barrier
2024
Ischemic stroke is a common cerebrovascular disease with high mortality, high morbidity, and high disability. Cerebral ischemia/reperfusion injury seriously affects the quality of life of patients. Luteolin-7-O-β-d-glucuronide (LGU) is a major active flavonoid compound extracted from Ixeris sonchifolia (Bge.) Hance, a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the protective effect of LGU on cerebral ischemia/reperfusion injury was investigated in an oxygen–glucose deprivation/reoxygenation (OGD/R) neuronal model and a transient middle cerebral artery occlusion (tMCAO) rat model. In in vitro experiments, LGU was found to improve the OGD/R-induced decrease in neuronal viability effectively by the MTT assay. In in vivo experiments, neurological deficit scores, infarction volume rates, and brain water content rates were improved after a single intravenous administration of LGU. These findings suggest that LGU has significant protective effects on cerebral ischemia/reperfusion injury in vitro and in vivo. To further explore the potential mechanism of LGU on cerebral ischemia/reperfusion injury, we performed a series of tests. The results showed that a single administration of LGU decreased the content of EB and S100B and ameliorated the abnormal expression of tight junction proteins ZO-1 and occludin and metalloproteinase MMP-9 in the ischemic cerebral cortex of the tMCAO 24-h injury model. In addition, LGU also improved the tight junction structure between endothelial cells and the degree of basement membrane degradation and reduced the content of TNF-α and IL-1β in the brain tissue. Thereby, LGU attenuated cerebral ischemia/reperfusion injury by improving the permeability of the blood–brain barrier. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.
Journal Article
Yolo-inspection: defect detection method for power transmission lines based on enhanced YOLOv5s
2023
Accurate identification of defective components in transmission lines and timely feedback to inspectors for timely maintenance can ensure the stable operation of the power system. A defect detection system based on “edge-cloud-end” collaboration is introduced to solve the problems of high bandwidth consumption and response delay in the cloud server-based approach. The system transfers the operation of image detection to the edge device, which reduces the data transmission and improves the response speed of the system. To balance the detection speed and accuracy of the algorithm, the YOLO-inspection algorithm applied on edge devices is proposed. The algorithm uses GhostNetV2 to reconstruct the C3 module in the YOLOv5 model, which reduces the computational complexity and captures the correlation between distant pixels so that it is more targeted to the critical region of the defective target. Meanwhile, based on the feature fusion network, a dynamic adaptive weight assignment module and cross-scale connectivity are designed to effectively reduce information loss and help the network learn fine-grained features. The improved algorithm is deployed on the NVIDIA Jetson Xavier NX platform, and the model is optimally accelerated using TensorRT. Experimental results show that the method proposed in this paper can accurately identify defective samples, and the YOLO-inspection algorithm has superior generalization ability under the harsh conditions of low light and snowfall weather conditions. On the edge computing platform, the mean average precision (mAP) can reach 94.3
%
, and the inference speed can reach 63 frames per second (FPS). It can be proved that the method has good detection performance.
Journal Article
Research and Design of Arc Welding Parameters Control and Environment Monitoring System Based on DSP
2023
In the process of the welding operation, a large number of welding smoke, toxic gas, and other pollutants will be produced, which can cause a variety of respiratory diseases. Therefore, the welder’s health is affected and the atmospheric environment is polluted. To monitor the detrimental soot substances produced in the arc welding process, an arc welding parameters control and environmental monitoring system was built by taking high-performance DSP (Digital Signal Processor) TMS320F2812 as the control core, which uses wireless communication technology. Multi-information sensing and welding parameters control can be carried out through the system in the arc welding process. The concentration of welding smoke, harmful gas, and other substances in the arc welding environment can be monitored in real time and the real-time environmental conditions are displayed visually. The functions of audible and visual alarms, automatic ventilation, and telecommunication are provided by the system. A lot of experimental verification and debugging results show that parameters control in the arc welding process and the monitor welding environment in real time could be realized by the built system and is running well.
Journal Article
Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources
2018
Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Journal Article