Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
27
result(s) for
"Lu, Yongke"
Sort by:
Role of oxidative stress in alcohol-induced liver injury
by
Lu, Yongke
,
Cederbaum, Arthur I
,
Wu, Defeng
in
Addictive behaviors
,
Adult and adolescent clinical studies
,
Alcohol Drinking - adverse effects
2009
Reactive oxygen species (ROS) are highly reactive molecules that are naturally generated in small amounts during the body's metabolic reactions and can react with and damage complex cellular molecules such as lipids, proteins, or DNA. Acute and chronic ethanol treatments increase the production of ROS, lower cellular antioxidant levels, and enhance oxidative stress in many tissues, especially the liver. Ethanol-induced oxidative stress plays a major role in the mechanisms by which ethanol produces liver injury. Many pathways play a key role in how ethanol induces oxidative stress. This review summarizes some of the leading pathways and discusses the evidence for their contribution to alcohol-induced liver injury. Special emphasis is placed on CYP2E1, which is induced by alcohol and is reactive in metabolizing and activating many hepatotoxins, including ethanol, to reactive products, and in generating ROS.
Journal Article
Associations of ARHGAP26 Polymorphisms with Alzheimer’s Disease and Cardiovascular Disease
by
Lu Yongke
,
Wang, Kesheng
,
Morrow, Deana F
in
Alzheimer's disease
,
Cardiovascular disease
,
Cardiovascular diseases
2022
The Rho GTPase activating protein 26 (ARHGAP26) gene has been reported to be associated with neuropsychiatric diseases and neurodegenerative diseases including Parkinson’s disease. We examined whether the ARHGAP26 gene is associated with Alzheimer’s disease (AD) and/or cardiovascular disease (CVD). Multivariable logistic regression model was used to examine the associations of 154 single nucleotide polymorphisms (SNPs) within the ARHGAP26 gene with AD and CVD using the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) cohort. Fourteen SNPs were associated with AD (top SNP rs3776362 with p = 3.43 × 10−3), while 37 SNPs revealed associations with CVD (top SNP rs415235 with p = 2.06 × 10−4). Interestingly, 13 SNPs were associated with both AD and CVD. SNP rs3776362 was associated with CVD, Functional Activities Questionnaire (FAQ), and Clinical Dementia Rating Sum of Boxes (CDR-SB). A replication study using a Caribbean Hispanics sample showed that 17 SNPs revealed associations with AD, and 12 SNPs were associated with CVD. The third sample using a family-based study design showed that 9 SNPs were associated with AD, and 3 SNPs were associated with CVD. SNP rs6836509 within the ARHGAP10 gene (an important paralogon of ARHGAP26) was associated with AD and cerebrospinal fluid total tau (t-tau) level in the ADNI sample. Several SNPs were functionally important using the RegulomeDB, while a number of SNPs were associated with significant expression quantitative trait loci (eQTLs) using Genotype-Tissue Expression (GTEx) databases. In conclusion, genetic variants within ARHGAP26 were associated with AD and CVD. These findings add important new insights into the potentially shared pathogenesis of AD and CVD.
Journal Article
Osteopontin induces ductular reaction contributing to liver fibrosis
2014
Objective In human chronic liver disease, there is association between ductular reaction (DR) and fibrosis; yet, the mechanism triggering its onset and its role in scar formation remains unknown. Since we previously showed that osteopontin (OPN) is highly induced during drug-induced liver fibrosis, we hypothesised that OPN could drive oval cells (OC) expansion and DR and signal to hepatic stellate cells (HSC) to promote scarring. Results In vivo studies demonstrated increased OPN expression in biliary epithelial cells (BEC) and in OC in thioacetamide (TAA)-treated mice. OPN ablation protected mice from TAA and bile duct ligation-induced liver injury, DR and scarring. This was associated with greater hepatocyte proliferation, lower OC expansion and DR along with less fibrosis, suggesting that OPN could activate the OC compartment to differentiate into BEC, which could then signal to HSC to enhance scarring. Since TAA-treated wild-type mice and cirrhotic patients showed TGF-β+ BEC, which were lacking in TAA-treated Opn−/− mice and in healthy human explants, this suggested that OPN could regulate TGF-β, a profibrogenic factor. In vitro experiments confirmed that recombinant OPN (rOPN) decreases hepatocyte proliferation and increases OC and BEC proliferation. To evaluate how BEC regulate collagen-I production in HSC, co-cultures were established. Co-cultured BEC upregulated OPN and TGF-β expression and enhanced collagen-I synthesis by HSC. Lastly, recombinant TGF-β (rTGFβ) and rOPN promoted BEC proliferation and neutralisation of OPN and TGF-β reduced collagen-I expression in co-cultured HSC. Conclusions OPN emerges as a key matricellular protein driving DR and contributing to scarring and liver fibrosis via TGF-β.
Journal Article
Midbrain circuit regulation of individual alcohol drinking behaviors in mice
by
Zhang, Hongxing
,
Montgomery, Sarah
,
Han, Ming-Hu
in
631/378/1689/5
,
631/378/1697/2603
,
631/378/3920
2017
Alcohol-use disorder (AUD) is the most prevalent substance-use disorder worldwide. There is substantial individual variability in alcohol drinking behaviors in the population, the neural circuit mechanisms of which remain elusive. Utilizing in vivo electrophysiological techniques, we find that low alcohol drinking (LAD) mice have dramatically higher ventral tegmental area (VTA) dopamine neuron firing and burst activity. Unexpectedly, VTA dopamine neuron activity in high alcohol drinking (HAD) mice does not differ from alcohol naive mice. Optogenetically enhancing VTA dopamine neuron burst activity in HAD mice decreases alcohol drinking behaviors. Circuit-specific recordings reveal that spontaneous activity of nucleus accumbens-projecting VTA (VTA-NAc) neurons is selectively higher in LAD mice. Specifically activating this projection is sufficient to reduce alcohol consumption in HAD mice. Furthermore, we uncover ionic and cellular mechanisms that suggest unique neuroadaptations between the alcohol drinking groups. Together, these data identify a neural circuit responsible for individual alcohol drinking behaviors.
Mice exposed to a two-bottle alcohol choice paradigm can be divided into high and low drinking groups. Here, the authors show that stimulating VTA neurons to induce higher phasic activity patterns that are observed in low alcohol drinking mice, suppresses alcohol drinking in mice that are high alcohol drinking.
Journal Article
Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity
by
Lu, Yongke
,
Cederbaum, Arthur
in
3-methyladenine
,
Adenine - analogs & derivatives
,
Adenine - pharmacology
2015
Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT), CYP2E1 knockout (KO) or CYP2E1 humanized transgenic knockin (KI), mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA), an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These results suggest that autophagy is protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. We speculate that autophagy-dependent processes such as mitophagy and lipophagy help to minimize ethanol-induced CYP2E1-dependent oxidative stress and therefore the subsequent liver injury and steatosis. Attempts to stimulate autophagy may be helpful in lowering ethanol and CYP2E1-dependent liver toxicity.
Journal Article
Genome-wide DNA methylation analysis in schizophrenia with tardive dyskinesia: a preliminary study
by
Lu, Yongke
,
An, Huimei
,
Tan, Yunlong
in
Analysis
,
Animal Genetics and Genomics
,
Antipsychotics
2023
Background
Tardive dyskinesia (TD) develops in 20–30% of schizophrenia patients and up to 50% in patients > 50 years old. DNA methylation may play an important role in the development of TD.
Objective
DNA methylation analyses in schizophrenia with TD.
Methods
We conducted a genome-wide DNA methylation analysis in schizophrenia with TD using methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-Seq) in a Chinese sample including five schizophrenia patients with TD and five without TD (NTD), and five healthy controls. The results were expressed as the log
2
FC, fold change of normalized tags between two groups within the differentially methylated region (DMR). For validation, the pyrosequencing was used to quantify DNA methylation levels of several methylated genes in an independent sample (
n
= 30).
Results
Through genome-wide MeDIP-Seq analysis, we identified 116 genes that were significantly differentially methylated in promotor regions in comparison of TD group with NTD group including 66 hypermethylated genes (top 4 genes are GABRR1, VANGL2, ZNF534, and ZNF746) and 50 hypomethylated genes (top 4 genes are DERL3, GSTA4, KNCN, and LRRK1). Part of these genes (such as DERL3, DLGAP2, GABRR1, KLRG2, LRRK1, VANGL2, and ZP3) were previously reported to be associated with methylation in schizophrenia. Gene Ontology enrichment and KEGG pathway analyses identified several pathways. So far, we have confirmed the methylation of 3 genes (ARMC6, WDR75, and ZP3) in schizophrenia with TD using pyrosequencing.
Conclusions
This study identified number of methylated genes and pathways for TD and will provide potential biomarkers for TD and serve as a resource for replication in other populations.
Journal Article
Levels of Angiotensin-Converting Enzyme and Apolipoproteins Are Associated with Alzheimer’s Disease and Cardiovascular Diseases
2021
Angiotensin-converting enzyme-1 (ACE1) and apolipoproteins (APOs) may play important roles in the development of Alzheimer’s disease (AD) and cardiovascular diseases (CVDs). This study aimed to examine the associations of AD, CVD, and endocrine-metabolic diseases (EMDs) with the levels of ACE1 and 9 APO proteins (ApoAI, ApoAII, ApoAIV, ApoB, ApoCI, ApoCIII, ApoD, ApoE, and ApoH). Non-Hispanic white individuals including 109 patients with AD, 356 mild cognitive impairment (MCI), 373 CVD, 198 EMD and controls were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Multivariable general linear model (GLM) was used to examine the associations. ApoE ε4 allele was associated with AD, as well as ApoAIV, ApoB and ApoE proteins, but not associated with CVD and EMD. Both AD and CVD were associated with levels of ACE1, ApoB, and ApoH proteins. AD, MCI and EMD were associated with levels of ACE1, ApoAII, and ApoE proteins. This is the first study to report associations of ACE1 and several APO proteins with AD, MCI, CVD and EMD, respectively, including upregulated and downregulated protein levels. In conclusion, as specific or shared biomarkers, the levels of ACE1 and APO proteins are implicated for AD, CVD, EMD and ApoE ε4 allele. Further studies are required for validation to establish reliable biomarkers for these health conditions.
Journal Article
Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity
2024
Obesity results in hepatic fat accumulation, i.e., steatosis. In addition to fat overload, impaired fatty acid β-oxidation also promotes steatosis. Fatty acid β-oxidation takes place in the mitochondria and peroxisomes. Usually, very long-chain and branched-chain fatty acids are the first to be oxidized in peroxisomes, and the resultant short chain fatty acids are further oxidized in the mitochondria. Peroxisome biogenesis is regulated by peroxin 16 (PEX16). In liver-specific PEX16 knockout (Pex16Alb-Cre) mice, hepatocyte peroxisomes were absent, but hepatocytes proliferated, and liver mass was enlarged. These results suggest that normal liver peroxisomes restrain hepatocyte proliferation and liver sizes. After high-fat diet (HFD) feeding, body weights were increased in PEX16 floxed (Pex16fl/fl) mice and adipose-specific PEX16 knockout (Pex16AdipoQ-Cre) mice, but not in the Pex16Alb-Cre mice, suggesting that the development of obesity is regulated by liver PEX16 but not by adipose PEX16. HFD increased liver mass in the Pex16fl/fl mice but somehow reduced the already enlarged liver mass in the Pex16Alb-Cre mice. The basal levels of serum triglyceride, free fatty acids, and cholesterol were decreased, whereas serum bile acids were increased in the Pex16Alb-Cre mice, and HFD-induced steatosis was not observed in the Pex16Alb-Cre mice. These results suggest that normal liver peroxisomes contribute to the development of liver steatosis and obesity.
Journal Article
Author Correction: Midbrain circuit regulation of individual alcohol drinking behaviors in mice
by
Zhang, Hongxing
,
Montgomery, Sarah
,
Han, Ming-Hu
in
631/378/1689/5
,
631/378/1697/2603
,
631/378/3920
2018
The original version of this Article contained an error in the spelling of the author Scott Edwards, which was incorrectly given as Scott Edward. This has now been corrected in both the PDF and HTML versions of the Article.
Journal Article
The adipokine C1q TNF related protein 3 (CTRP3) is elevated in the breast milk of obese mothers
2018
C1q TNF related protein 3 (CTRP3) is a relatively novel hormonal factor primarily derived from adipose tissue and has anti-diabetic properties. To determine if CTRP3 could play a role in early childhood development, the purpose of this study was to establish the presence of CTRP3 in breast milk (BM) and to determine whether CTRP3 levels were correlated with pregravid obesity status of the mother.
Breast milk was collected from breast-feeding mothers who had a pregravid body mass index (BMI) classification of normal weight (BMI 18-25 kg/m
,
= 23) or obese (BMI > 30 kg/m
,
= 14). Immunoprecipitation followed by immunoblot analysis confirmed the presence of CTRP3 in BM. The concentration of CTRP3 in BM samples was determined by ELISA. Additional bioactive components were also measured by commercially available assays: ghrelin, insulin, leptin, adiponectin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glucose. Bioactive components in normal weight and obese mothers were compared using unpaired
-test (parametric) and Mann-Whitney
-test (non-parametric), as appropriate.
The primary findings of this study are that the adipokine CTRP3 is present in BM and CTRP3 levels are increased with pregravid obesity. Additionally, this study independently confirmed previous work that BM from obese mothers has a higher concentration of insulin and leptin. Further, no differences were observed in BM between obese and normal weight mothers in ghrelin, adiponectin, IL-6, TNF-α, or glucose levels.
This study identified a novel factor in BM, CTRP3, and showed that BM CTRP3 levels higher in obese mothers. Because of the purported insulin sensitizing effect of CTRP3, it is possible that the elevated levels of CTRP3 in the BM of obese mothers may offset negative effects of elevated leptin and insulin levels in the BM of obese mothers. Future studies will need to be conducted to determine the relevance of CTRP3 in BM and to examine the presence of other adipose tissue-derived hormonal factors.
Journal Article