Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"Lu, Zhuoyue"
Sort by:
Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system
by
Luo, Zhibing
,
Zhang, Yongjun
,
Deng, Juan
in
Amino acids
,
Biology and Life Sciences
,
Cell surface
2023
Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-β-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall β-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain ( BbEng1 OE ). The BbEng1 OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M . acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.
Journal Article
Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure
by
Cheng, LiangLiang
,
Yang, Zhuoyue
,
Li, Junyan
in
Artificial bone
,
Biology and Life Sciences
,
Biomedical materials
2020
Bone scaffolds are widely used as one of the main bone substitute materials. However, many bone scaffold microstructure topologies exist and it is still unclear which topology to use when designing scaffold for a specific application. The aim of the present study was to reveal the mechanism of the microstructure-driven performance of bone scaffold and thus to provide guideline on scaffold design. Finite element (FE) models of five TPMS (Diamond, Gyroid, Schwarz P, Fischer-Koch S and F-RD) and three traditional (Cube, FD-Cube and Octa) scaffolds were generated. The effective compressive and shear moduli of scaffolds were calculated from the mechanical analysis using the FE unit cell models with the periodic boundary condition. The scaffold permeability was calculated from the computational fluid dynamics (CFD) analysis using the 4×4×4 FE models. It is revealed that the surface-to-volume ratio of the Fischer-Koch S-based scaffold is the highest among the scaffolds investigated. The mechanical analysis revealed that the bending deformation dominated structures (e.g., the Diamond, the Gyroid, the Schwarz P) have higher effective shear moduli. The stretching deformation dominated structures (e.g., the Schwarz P, the Cube) have higher effective compressive moduli. For all the scaffolds, when the same amount of change in scaffold porosity is made, the corresponding change in the scaffold relative shear modulus is larger than that in the relative compressive modulus. The CFD analysis revealed that the structures with the simple and straight pores (e.g., Cube) have higher permeability than the structures with the complex pores (e.g., Fischer-Koch S). The main contribution of the present study is that the relationship between scaffold properties and the underlying microstructure is systematically investigated and thus some guidelines on the design of bone scaffolds are provided, for example, in the scenario where a high surface-to-volume ratio is required, it is suggested to use the Fischer-Koch S based scaffold.
Journal Article
Fusion of BeiDou and MODIS Precipitable Water Vapor Using the Random Forest Algorithm: A Case Study of Multi-Source Data Synergy in Hunan Province, China
2025
The accurate monitoring of water vapor is essential for understanding the hydrological cycle and improving weather forecasting. Although the Moderate-resolution Imaging Spectroradiometer (MODIS) provides spatially continuous precipitable water vapor (PWV), validation in Hunan Province reveals a systematic underestimation, with correlations to radiosonde (RS-PWV) around 0.40 and average RMSE and MAE reaching 23.80 and 18.04 mm. To address this issue, high-accuracy PWV derived from the BeiDou Navigation Satellite System (BDS-PWV), which show high consistency with RS-PWV, were incorporated. A random forest daily-scale water vapor fusion model was developed based on the differential characteristics of dry and wet season residuals. By employing day of year (DOY), latitude, longitude, and elevation as auxiliary factors, the model establishes a seasonal fusion framework that dynamically transitions between dry and wet seasons. Validation shows that the fusion PWV aligns closely with RS-PWV, reducing average RMSE and MAE to 4.71 and 3.81 mm, corresponding to improvements of 80.21% and 78.88% over MODIS, with accuracy increases exceeding 75% at all stations. The fusion model effectively mitigates MODIS’s underestimation and weather sensitivity, producing high-accuracy, spatially continuous daily PWV fields and offering strong potential for improving precipitation and weather forecasting in complex regions such as Hunan Province.
Journal Article
A2-Mode Lamb Passive-Wireless Surface-Acoustic-Wave Micro-Pressure Sensor Based on Cantilever Beam Structure
2025
Passive-wireless surface-acoustic-wave (SAW) micro-pressure sensors are suitable for extreme scenarios where wired sensors are not applicable. However, as the measured pressure decreases, conventional SAW micro-pressure sensors struggle to meet expected performance due to insufficient sensitivity. This article proposes a a method of using an A2-mode Lamb SAW sensor and introduces an inertial structure in the form of a cantilever beam to enhance sensitivity. An MEMS-compatible manufacturing process was employed to create a multi-layer structure of SiO2, AlN, and SOI for the SAW micro-pressure sensor. To investigate the operational performance of the SAW micro-pressure sensor, a micro-pressure testing system was established. The experimental results demonstrate that the sensor exhibits high sensitivity to micro-pressure, validating the effectiveness of the proposed design.
Journal Article
Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer
2024
Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.
Somatic cloning of rhesus monkey has not been successful until now. Here, authors report epigenetic abnormalities in SCNT embryos and placentas and develop a trophoblast replacement method that enables them to successful clone of a healthy male rhesus monkey.
Journal Article
A Fast-Response Red Shifted Fluorescent Probe for Detection of H2S in Living Cells
2020
Near-infrared (NIR) fluorescent probes are attractive tools for bioimaging applications because of their low auto-fluorescence interference, minimal damage to living samples, and deep tissue penetration. H2S is a gaseous signaling molecule that is involved in redox homeostasis and numerous biological processes in vivo. To this end, we have developed a new red shifted fluorescent probe 1 to detect physiological H2S in live cells. The probe 1 is based on a rhodamine derivative as the red shifted fluorophore and the thiolysis of 7-nitro 1,2,3-benzoxadiazole (NBD) amine as the H2S receptor. The probe 1 displays fast fluorescent enhancement at 660 nm (about 10-fold turn-ons, k2 = 29.8 M−1s−1) after reacting with H2S in buffer (pH 7.4), and the fluorescence quantum yield of the activated red shifted product can reach 0.29. The probe 1 also exhibits high selectivity and sensitivity towards H2S. Moreover, 1 is cell-membrane-permeable and mitochondria-targeting, and can be used for imaging of endogenous H2S in living cells. We believe that this red shifted fluorescent probe can be a useful tool for studies of H2S biology.
Journal Article
Selected cutaneous adverse events in patients treated with ICI monotherapy and combination therapy: a retrospective pharmacovigilance study and meta-analysis
by
Guo, Qixiang
,
Zhang, Huiyun
,
Yao, Jiannan
in
Adverse events
,
Bayesian analysis
,
Cancer therapies
2023
Introduction: Cutaneous adverse events are commonly reported immune-related adverse events (irAEs), some of which are serious or even life-threatening, and it is essential to study these specific cutaneous AEs to understand their characteristics and risk. Methods: We performed a meta-analysis of published clinical trials for immune checkpoint inhibitors (ICIs) to evaluate the incidence of cutaneous adverse events, using data from PubMed, Embase, and the Cochrane Library databases. Results: A total of 232 trials with 45,472 patients were involved. Results showed that anti-PD-1 and targeted therapy combinations were associated with higher risk for most of the selected cutaneous adverse events. In addition, a retrospective pharmacovigilance study was conducted using the Food and Drug Administration (FDA) Adverse Events System database. Reporting odds ratio (ROR) and Bayesian information components (IC) were used to perform the disproportionality analysis. Cases were extracted from January 2011 to September 2020. We identified 381 (20.24%) maculopapular rash, 213 (11.32%) vitiligo, 215 (11.42%) Stevens‐Johnson syndrome (SJS), and 165 (8.77%) toxic epidermal necrolysis (TEN) cases. For vitiligo, anti-PD-1/L1 combined with anti-CTLA-4 therapy showed the strongest signal (ROR: 55.89; 95% CI: 42.34–73.78; IC 025 : 4.73). Palmar-plantar erythrodysesthesia (PPE) was reported with the most significant association with combined anti-PD-1/L1 and VEGF (R)-TKIs (ROR: 18.67; 95% CI: 14.77–23.60; IC 025 : 3.67). For SJS/TEN, antiPD-1 inhibitors showed the strongest signal (ROR: 3.07; 95% CI: 2.68–3.52; IC 025 : 1.39). The median onset time of vitiligo and SJS/TEN was 83 and 24 days, respectively. Conclusion: Overall, in selected cutaneous AEs, each of them showed specific characteristics. It is necessary to realize their differences and take appropriate interventions in patients with different regimens.
Journal Article
NE contribution to rebooting unconsciousness caused by midazolam
2024
The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.
Journal Article
Advances of Complex Marine Environmental Influences on Underwater Vehicles
by
Yuan, Zhiming
,
Du, Peng
,
Zhao, Sen
in
Analysis
,
Artificial intelligence
,
density stratification
2025
Underwater vehicles serve as critical assets for global ocean exploration and naval capability enhancement. The marine environment exhibits intricate hydrodynamic phenomena that significantly threaten underwater vehicle navigation safety, particularly in four prevalent complex conditions: surface waves, oceanic currents, stratified fluids, and internal waves. This comprehensive review systematically examines the impacts of these four marine environments on underwater vehicles through critical analysis and synthesis of contemporary advances in theoretical frameworks, experimental methodologies, and numerical simulation approaches. The identified influences are categorized into five primary aspects: hydrodynamic characteristics, dynamic response patterns, load distribution mechanisms, navigation trajectory optimization, and stealth performance. Particular emphasis is placed on internal wave interactions, with rigorous analysis derived from experimental investigations and numerical modeling of internal wave dynamics and their coupling effects with underwater vehicles. In addition, this review points out and analyzes the shortcomings of the current research in various aspects and puts forward some thoughts and suggestions for future research directions that are worth further exploration, including enriching the research objects, upgrading the experimental techniques, and introducing artificial intelligence methods.
Journal Article
The Use of an Advanced Intelligent–Responsive Polymer for the Study of Dynamic Water–Carbon Dioxide Alternating Displacement
2024
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) and N,N-dimethyl-1,3-propanediamine (NND). Upon testing the average particle size in the aqueous solution both prior and subsequent to CO2 passage, it became evident that OANND assumes the form of a small-molecule particle in the aqueous phase, minimizing damage during formation. Notably, upon CO2 exposure, it promptly organizes into stable micelles with an average size of 88 nm and a relatively uniform particle distribution. This unique characteristic endows it with a rapid CO2 response mechanism and the ability to form a highly resilient gel. In the exploration of viscoelastic fluids, we observed the remarkable behavior of the AONND aqueous solution when CO2/N2 was introduced. This system displayed repeatable transitions between aqueous and gel states, with the highest viscosity peaking at approximately 3895 mPa·s, highlighting its viscosity reversibility and reusability properties. The rheological property results that we obtained indicate that an elongated micellar structure is present in the solution system, with the optimal concentration ratio for its formation determined as 0.8, which is the molar ratio of the OANND-NaOA system. In the sealing performance tests, a 1.0 wt% concentration of the gel system exhibited excellent injectability properties. At 80 °C, this gel effectively reduced the permeability of a sand-filled model to 94.5% of its initial value, effectively sealing potential leakage paths or gas fluxes. This remarkable ability to block leakage paths and reduce seepage capacity highlights the material’s superior blocking effect and erosion resistance properties. Furthermore, even at a temperature of 90 °C and an injection pore volume (PV) of 3, this plugging system could reduce the permeability of a high-permeability sand-filled model to over 90% of its initial value.
Journal Article