Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Lu, Zongshi"
Sort by:
Modified Roux-en-Y gastric bypass surgery avoids complications in mice
Roux-en-Y gastric bypass(RYGB)surgery delivers an improvement in obesity and obesity-related risks. However, due to the limited operational space in the abdominal cavity of mice, the technical complexity of RYGB surgery and the postoperative complications hinder its mechanism research. The aim was to develop a device that makes it easier to anastomose the esophagus to the jejunum. We have invented a simple gastrointestinal anastomosis auxiliary device consisting of a rigid front end and a flexible rear end. Thirty male C57BL6J mice were subjected to RYGB with an auxiliary device. Postoperative recovery and survival status of mice were evaluated using body weight, food intake, body fat, and glucose tolerance. Based on the RYGB surgical methodology reported in previous literature, the anastomosis device described in this article assists in end-to-end anastomosis of the esophagus and jejunum, which reduces surgical difficulty and time. CT scan results revealed that, following a short - term recovery period after mRYGB surgery, no leakage or stenosis was detected at the anastomotic site in the mice. Moreover, after postoperative recovery, there was no significant difference in food intake, weight and body fat distribution compared with Sham mice, but the glucose tolerance of mRYGB mice was significantly improved. Our modified RYGB surgical method can effectively avoid the problems of anastomotic leakage and stenosis in mice and improve long-term quality of life.
Lack of TRPV1 aggravates obesity-associated hypertension through the disturbance of mitochondrial Ca2+ homeostasis in brown adipose tissue
The combination of obesity and hypertension is associated with high morbidity and mortality; however, the mechanism underlying obesity-induced hypertension remains unclear. In this study, we detected the possible effects of TRPV1, a previously identified antihypertensive calcium (Ca 2+ ) channel in adipose tissue, on the occurrence of obesity and hypertension in mice lacking UCP1, a spontaneously genetically manipulated obesity model, by generating TRPV1 and UCP1 double knockout mice. In these mice, obesity and hypertension appeared earlier and were more severe than in mice with the knockout of UCP1 or TRPV1 alone. The knockout of TRPV1 in UCP1 knockout mice further reduced functional brown adipose tissue (BAT) generation; decreased resting oxygen consumption, heat production, and locomotor activities; and was accompanied by severe mitochondrial respiratory dysfunction in BAT. Mechanistically, TRPV1, UCP1, and LETM1 acted as a complex to maintain an appropriate mitochondrial Ca 2+ level, and TRPV1 knockout caused a compensatory increase in mitochondrial Ca 2+ uptake via LETM1 activation. However, the compensatory response was blocked in UCP1 −/− mice, resulting in dramatically reduced mitochondrial Ca 2+ uptake and higher production of ATP and oxidative stress. This study provides in vivo evidence for the critical role of BAT mitochondrial Ca 2+ homeostasis in obesity-associated hypertension and indicates that the TRPV1/UCP1/LETM1 complex may be an alternative intervention target.
Meriones unguiculatus serves as a spontaneous primary aldosteronism rodent model
Primary aldosteronism (PA) is the most common form of endocrine hypertension. The available animal models of PA rely on gene manipulation, thus fail to duplicate the general pathological process of PA in humans. Meriones unguiculatus (MU) has been reported to possess a large size of adrenal gland and an elevated ability to save water. In this study, we aimed to confirm whether MU can serve as an ideal animal model of PA. Sprague Dawley rats of the same body weight (SD1) or age (SD2) as MU were used as control groups. Blood pressure and serum aldosterone, renin and electrolyte levels were measured, and the oral salt loading test was used as confirmatory test to compare the inhibition level of the renin angiotensin aldosterone system (RAAS) among the three groups. The expression and distribution of CYP11B2 (aldosterone synthase) were evaluated in the adrenal gland of each group. MU exhibited typical clinical manifestations of PA, including hypertension, hyperaldosteronism, low renin levels and strong sodium retention and potassium excretion abilities. Compared with control groups, the inhibitory effect of a high-sodium diet on the RAAS was milder in MU, accompanied by significant cardiac dysfunction. The protein expression level and distribution area of CYP11B2 were significantly increased in the adrenal gland of MU. The current study reveals that MU could serve as an ideal spontaneous PA model. The increased expression and distribution of CYP11B2 stimulate the excessive aldosterone production in a renin-independent manner, leading to a significant increase in blood pressure in MU.
Leptin receptor deficiency impedes metabolic surgery related-weight loss through inhibition of energy expenditure in db/db mice
Background Roux-en-Y gastric bypass (RYGB) surgery is an effective metabolic surgery against diabetes and obesity. Clinical evidence indicates that patients with severe obesity have a poor curative effect in losing weight if they suffer from leptin or its receptor deficiency, but the underlying mechanism remains elusive. Here, we investigated the effect of leptin receptor deficiency on metabolic dysfunction in db/db mice treated by RYGB surgery. Methods The db/db mice and their heterozygote control db/m mice were subjected to RYGB or sham surgery. Body weight, blood glucose, food intake and glucose tolerance were evaluated. Micro-PET/CT and histological analysis were performed to examine the glucose uptake of tissues and the fat changes in mice. The key factors in glucose and fatty acid metabolism were detected by western blot analysis. Results Compared with the sham group, the db/db mice in the RYGB group showed more significant weight regain after surgical recovery and improvement in hyperinsulinemia and glucose tolerance. However, the total body fat and multiple organ lipid deposition of RYGB-treated db/db mice was increased. The underlying mechanism studies suggested that the activation of AMPK regulated GLUT4 to increase glucose uptake, but AMPK could not promote fatty acid oxidation through the JAK2/STAT3 pathway under leptin receptor deficiency in db/db mice. Conclusion We conclude that leptin receptor deficiency impedes the AMPK activation-mediated fat catabolism but does not affect AMPK-related glucose utilization after metabolic surgery in db/db mice. This result helps select surgical indications for patients with obesity and diabetes.
Recurrent moderate hypoglycemia accelerates the progression of Alzheimer's disease through impairment of the TRPC6/GLUT3 pathway
Currently, the most effective strategy for dealing with Alzheimer's disease (AD) is delaying the onset of dementia. Severe hypoglycemia is strongly associated with dementia; however, the effects of recurrent moderate hypoglycemia (RH) on the progression of cognitive deficits in patients with diabetes with genetic susceptibility to AD remain unclear. Here, we report that insulin-controlled hyperglycemia slightly aggravated AD-type pathologies and cognitive impairment; however, RH significantly increased neuronal hyperactivity and accelerated the progression of cognitive deficits in streptozotocin-induced (STZ-induced) diabetic APP/PS1 mice. Glucose transporter 3-mediated (GLUT3-mediated) neuronal glucose uptake was not significantly altered under hyperglycemia but was markedly reduced by RH, which induced excessive mitochondrial fission in the hippocampus. Overexpression of GLUT3, specifically in the dentate gyrus (DG) area of the hippocampus, enhanced mitochondrial function and improved cognitive deficits. Activation of the transient receptor potential channel 6 (TRPC6) increased GLUT3-mediated glucose uptake in the brain and alleviated RH-induced cognitive deficits, and inactivation of the Ca2+/AMPK pathway was responsible for TRPC6-induced GLUT3 inhibition. Taken together, RH impairs brain GLUT3-mediated glucose uptake and further provokes neuronal mitochondrial dysfunction by inhibiting TRPC6 expression, which then accelerates progression of cognitive deficits in diabetic APP/PS1 mice. Avoiding RH is essential for glycemic control in patients with diabetes, and TRPC6/GLUT3 represents potent targets for delaying the onset of dementia in patients with diabetes.
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-δ on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-δ, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1−/− mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-δ expression.
Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats
Background/Aims: High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Methods: Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Results: Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR), and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. Conclusion: The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats.
TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-□ Upregulation
High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-δ on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-δ, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1-/- mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-δ expression.
TRPC5 deletion in the central amygdala antagonizes high-fat diet-induced obesity by increasing sympathetic innervation
Transient receptor potential channel 5 (TRPC5) is predominantly distributed in the brain, especially in the central amygdala (CeA), which is closely associated with pain and addiction. Although mounting evidence indicates that the CeA is related to energy homeostasis, the possible regulatory effect of TRPC5 in the CeA on metabolism remains unclear. Here, we reported that the expression of TRPC5 in the CeA of mice was increased under a high-fat diet (HFD). Specifically, the deleted TRPC5 protein in the CeA of mice using adeno-associated virus resisted HFD-induced weight gain, accompanied by increased food intake. Furthermore, the energy expenditure of CeA-specific TRPC5 deletion mice (TRPC5 KO) was elevated due to augmented white adipose tissue (WAT) browning and brown adipose tissue (BAT) activity. Mechanistically, deficiency of TRPC5 in the CeA boosted nonshivering thermogenesis under cold stimulation by stimulating sympathetic nerves, as the β3-adrenoceptor (Adrb3) antagonist SR59230A blocked the effect of TRPC5 KO on this process. In summary, TRPC5 deletion in the CeA alleviated the metabolic deterioration of mice fed a HFD, and these phenotypic improvements were correlated with the increased sympathetic distribution and activity of adipose tissue.
Endothelial SIRT3 deficiency predisposes brown adipose tissue to whitening in diet-induced obesity
Endothelial dysfunction and vascular rarefaction are supposed to be secondary to metabolic diseases, while recent evidence has revealed the primary roles of endothelium in initiating and accelerating metabolic disorders. Here, the effects and underlying mechanisms of endothelial SIRT3 in modulating the whitening of BAT during obesity progression were explored. Therefore, mice with global or BAT regional endothelium-specific Sirt3 knockout were constructed and fed with high-fat diet (HFD). The results showed that both global and BAT regional endothelium-specific Sirt3 knockout accelerated diet-induced weight gain, accompanied by glucose intolerance, insulin resistance, and BAT whitening. In vitro results revealed that the inhibition or knockdown of endothelial Sirt3 impeded palmitic acid-induced angiogenesis deficiency, while the overexpression of Sirt3 exhibited the opposite effects. Furtherly, endothelial Sirt3 overexpression ameliorated palmitic acid-induced adipocyte dysfunction and proinflammatory macrophages polarization in a paracrine way. Mechanistically, endothelial SIRT3 deficiency increased the acetylation of fatty acid synthase (FASN), which disturbed the fatty acid metabolism and thus, leading to angiogenesis insufficiency. Moreover, loss of SIRT3 promoted adipocytes dysfunction and proinflammatory macrophage polarization via CASP1-mediated pyroptosis. Endothelial SIRT3 loss contributed to diet-induced BAT whitening and obesity progression and thus, could be a therapeutic target in treating obesity and associated metabolic diseases.