Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Lu Fang Jun-Pin Lin Xiao-Chan Qiu Jin-Xiao Ou Xian-Fei Ding"
Sort by:
Turning machining induced microstructural stability of a high Nb-containing TiAl alloy during high temperature exposure
Turning machining induced microstructural instability was investigated in a fully lamellar Ti-45Al-8.5Nb-(W,B,Y) alloy during high temperature exposure.After turning machining followed by thermal exposure at900 or 1000℃ for 100,300 and 500 h,a depth-dependent gradient microstructure with random orientations was produced in the region close to the machining surface.Two typical layers,a fine-grained(FG) layer with equiaxed grains and a coarse-grained(CG) layer with elongated grains,are formed in this region in transversal direction.The thickness of the two layers is up to 120 urn after thermal exposure at 1000℃ for 500 h,which is less than the depth of the hardened region(200 μm) after turning machining.Most of the new grains in FG and CG layers are constituted of γ single phase,while short α_2 segments and few B2 particles are precipitated at the γ/γ interface or inside the γ grains.Recrystallization and phase boundary bulging are found to be the major mechanisms responsible for lamellar degradation in FG layer and CG layer,respectively.The residual deformation energy stored is considered to be the main driving force of this process.