Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
148 result(s) for "Lubinski, David"
Sort by:
From Terman to Today: A Century of Findings on Intellectual Precocity
One hundred years of research (1916-2016) on intellectually precocious youth is reviewed, painting a portrait of an extraordinary source of human capital and the kinds of learning opportunities needed to facilitate exceptional accomplishments, life satisfaction, and positive growth. The focus is on those studies conducted on individuals within the top 1% in general or specific (mathematical, spatial, or verbal reasoning) abilities. Early insights into the giftedness phenomenon actually foretold what would be scientifically demonstrated 100 years later. Thus, evidence-based conceptualizations quickly moved from viewing intellectually precocious individuals as weak and emotionally labile to highly effective and resilient individuals. Like all groups, intellectually precocious students and adults have strengths and relative weaknesses; they also reveal vast differences in their passion for different pursuits and their drive to achieve. Because they do not possess multipotentiality, we must take a multidimensional view of their individuality. When done, it predicts well long-term educational, occupational, and creative outcomes.
Study of Mathematically Precocious Youth after 35 Years: Uncovering Antecedents for the Development of Math-Science Expertise
This review provides an account of the Study of Mathematically Precocious Youth (SMPY) after 35 years of longitudinal research. Findings from recent 20-year follow-ups from three cohorts, plus 5- or 10-year findings from all five SMPY cohorts (totaling more than 5,000 participants), are presented. SMPY has devoted particular attention to uncovering personal antecedents necessary for the development of exceptional math-science careers and to developing educational interventions to facilitate learning among intellectually precocious youth. Along with mathematical gifts, high levels of spatial ability, investigative interests, and theoretical values form a particularly promising aptitude complex indicative of potential for developing scientific expertise and of sustained commitment to scientific pursuits. Special educational opportunities, however, can markedly enhance the development of talent. Moreover, extraordinary scientific accomplishments require extraordinary commitment both in and outside of school. The theory of work adjustment (TWA) is useful in conceptualizing talent identification and development and bridging interconnections among educational, counseling, and industrial psychology. The lens of TWA can clarify how some sex differences emerge in educational settings and the world of work. For example, in the SMPY cohorts, although more mathematically precocious males than females entered math-science careers, this does not necessarily imply a loss of talent because the women secured similar proportions of advanced degrees and high-level careers in areas more correspondent with the multidimensionality of their ability-preference pattern (e.g., administration, law, medicine, and the social sciences). By their mid-30s, the men and women appeared to be happy with their life choices and viewed themselves as equally successful (and objective measures support these subjective impressions). Given the ever-increasing importance of quantitative and scientific reasoning skills in modern cultures, when mathematically gifted individuals choose to pursue careers outside engineering and the physical sciences, it should be seen as a contribution to society, not a loss of talent.
Exceptional Cognitive Ability: The Phenotype
Characterizing the outcomes related to the phenotype of exceptional cognitive abilities has been feasible in recent years due to the availability of large samples of intellectually precocious adolescents identified by modern talent searches that have been followed-up longitudinally over multiple decades. The level and pattern of cognitive abilities, even among participants within the top 1% of general intellectual ability, are related to differential developmental trajectories and important life accomplishments: The likelihood of earning a doctorate, earning exceptional compensation, publishing novels, securing patents, and earning tenure at a top university (and the academic disciplines within which tenure is most likely to occur) all vary as a function of individual differences in cognitive abilities assessed decades earlier. Individual differences that distinguish the able (top 1 in 100) from the exceptionally able (top 1 in 10,000) during early adolescence matter in life, and, given the heritability of general intelligence, they suggest that understanding the genetic and environmental origins of exceptional abilities should be a high priority for behavior genetic research, especially because the results for extreme groups could differ from the rest of the population. In addition to enhancing our understanding of the etiology of general intelligence at the extreme, such inquiry may also reveal fundamental determinants of specific abilities, like mathematical versus verbal reasoning, and the distinctive phenotypes that contrasting ability patterns are most likely to eventuate in at extraordinary levels.
Creativity and Technical Innovation: Spatial Ability's Unique Role
In the late 1970s, 563 intellectually talented 13-year-olds (identified by the SAT as in the top 0.5% of ability) were assessed on spatial ability. More than 30 years later, the present study evaluated whether spatial ability provided incremental validity (beyond the SAT's mathematical and verbal reasoning subtests) for differentially predicting which of these individuals had patents and three classes of refereed publications. A two-step discriminant-function analysis revealed that the SAT subtests jointly accounted for 10.8% of the variance among these outcomes (p < .01); when spatial ability was added, an additional 7.6% was accounted for—a statistically significant increase (p < .01). The findings indicate that spatial ability has a unique role in the development of creativity, beyond the roles played by the abilities traditionally measured in educational selection, counseling, and industrial-organizational psychology. Spatial ability plays a key and unique role in structuring many important psychological phenomena and should be examined more broadly across the applied and basic psychological sciences.
Psychological Constellations Assessed at Age 13 Predict Distinct Forms of Eminence 35 Years Later
This investigation examined whether math/scientific and verbal/humanistic ability and preference constellations, developed on intellectually talented 13-year-olds to predict their educational outcomes at age 23, continue to maintain their longitudinal potency by distinguishing distinct forms of eminence 35 years later. Eminent individuals were defined as those who, by age 50, had accomplished something rare: creative and highly impactful careers (e.g., full professors at research-intensive universities, Fortune 500 executives, distinguished judges and lawyers, leaders in biomedicine, award-winning journalists and writers). Study 1 consisted of 677 intellectually precocious youths, assessed at age 13, whose leadership and creative accomplishments were assessed 35 years later. Study 2 constituted a constructive replication—an analysis of 605 top science, technology, engineering, and math (STEM) graduate students, assessed on the same predictor constructs early in graduate school and assessed again 25 years later. In both samples, the same ability and preference parameter values, which defined math/scientific versus verbal/humanistic constellations, discriminated participants who ultimately achieved distinct forms of eminence from their peers pursuing other life endeavors.
Life Paths and Accomplishments of Mathematically Precocious Males and Females Four Decades Later
Two cohorts of intellectually talented 13-year-olds were identified in the 1970s (1972–1974 and 1976–1978) as being in the top 1% of mathematical reasoning ability (1,037 males, 613 females). About four decades later, data on their careers, accomplishments, psychological well-being, families, and life preferences and priorities were collected. Their accomplishments far exceeded base-rate expectations: Across the two cohorts, 4.1% had earned tenure at a major research university, 2.3% were top executives at \"name brand\" or Fortune 500 companies, and 2.4% were attorneys at major firms or organizations; participants had published 85 books and 7,572 refereed articles, secured 681 patents, and amassed $358 million in grants. For both males and females, mathematical precocity early in life predicts later creative contributions and leadership in critical occupational roles. On average, males had incomes much greater than their spouses', whereas females had incomes slightly lower than their spouses'. Salient sex differences that paralleled the differential career outcomes of the male and female participants were found in lifestyle preferences and priorities and in time allocation.
Contrasting Intellectual Patterns Predict Creativity in the Arts and Sciences: Tracking Intellectually Precocious Youth over 25 Years
A sample of 2,409 intellectually talented adolescents (top 1%) who were assessed on the SAT by age 13 was tracked longitudinally for more than 25 years.Their creative accomplishments,with particular emphasis on literary achievement and scientific-technical innovation, were examined as a function of ability level (sum of math and verbal SAT scores) and tilt (math SAT score minus verbal SAT score). Results showed that distinct ability patterns uncovered by age 13 portend contrasting forms of creative expression by middle age. Whereas ability level contributes significantly to creative accomplishments, ability tilt is critical for predicting the specific domain in which they occur (e.g., securing a tenure-track position in the humanities vs. science, technology, engineering, or mathematics; publishing a novel vs. securing a patent).
A Twin Study of the Genetics of High Cognitive Ability Selected from 11,000 Twin Pairs in Six Studies from Four Countries
Although much genetic research has addressed normal variation in intelligence, little is known about the etiology of high cognitive abilities. Using data from 11,000 twin pairs (age range = 6–71 years) from the genetics of high cognitive abilities consortium, we investigated the genetic and environmental etiologies of high general cognitive ability ( g ). Age-appropriate psychometric cognitive tests were administered to the twins and used to create g scores standardized within each study. Liability-threshold model fitting was used to estimate genetic and environmental parameters for the top 15% of the distribution of g . Genetic influence for high g was substantial (0.50, with a 95% confidence interval of 0.41–0.60). Shared environmental influences were moderate (0.28, 0.19–0.37). We conclude that genetic variation contributes substantially to high g in Australia, the Netherlands, the United Kingdom and the United States.
Who Rises to the Top? Early Indicators
Youth identified before age 13 (N = 320) as having profound mathematical or verbal reasoning abilities (top 1 in 10,000) were tracked for nearly three decades. Their awards and creative accomplishments by age 38, in combination with specific details about their occupational responsibilities, illuminate the magnitude of their contribution and professional stature. Many have been entrusted with obligations and resources for making critical decisions about individual and organizational well-being. Their leadership positions in business, health care, law, the professoriate, and STEM (science, technology, engineering, and mathematics) suggest that many are outstanding creators of modern culture, constituting a precious human-capital resource. Identifying truly profound human potential, and forecasting differential development within such populations, requires assessing multiple cognitive abilities and using atypical measurement procedures. This study illustrates how ultimate criteria may be aggregated and longitudinally sequenced to validate such measures.