Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Lucie Dolečková-Marešová"
Sort by:
From Nonpeptide toward Noncarbon Protease Inhibitors: Metallacarboranes as Specific and Potent Inhibitors of HIV Protease
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submi-cromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 $\\ring{A}$ resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
Differential Elicitation of Two Processing Proteases Controls the Processing Pattern of the Trypsin Proteinase Inhibitor Precursor in Nicotiana attenuata
Trypsin proteinase inhibitors (TPIs) of Nicotiana attenuata are major antiherbivore defenses that increase dramatically in leaves after attack or methyl jasmonate (MeJA) elicitation. To understand the elicitation process, we characterized the proteolytic fragmentation and release of TPIs from a multidomain precursor by proteases in MeJA-elicited and unelicited plants. A set of approximately 6-kD TPI peptides was purified from leaves, and their posttranslational modifications were characterized. In MeJA-elicited plants, the diversity of TPI structures was greater than the precursor gene predicted. This elicited structural heterogeneity resulted from differential fragmentation of the linker peptide (LP) that separates the seven-domain TPI functional domains. Using an in vitro fluorescence resonance energy transfer assay and synthetic substrates derived from the LP sequence, we characterized proteases involved in both the processing of the TPI precursor and its vacuolar targeting sequence. Although both a vacuolar processing enzyme and a subtilisin-like protease were found to participate in a two-step processing of LP, only the activity of the subtilisin-like protease was significantly increased by MeJA elicitation. We propose that MeJA elicitation increases TPI precursor production and saturates the proteolytic machinery, changing the processing pattern of TPIs. To test this hypothesis, we elicited a TPI-deficient N. attenuata genotype that had been transformed with a functional NaTPI gene under control of a constitutive promoter and characterized the resulting TPIs. We found no alterations in the processing pattern predicted from the sequence: a result consistent with the saturation hypothesis.
In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro
The stored-product mites are the most abundant and frequent group of pests living on the stored food products in Europe. They endanger public health since they produce allergens and transmit mycotoxin-producing fungi. Novel acaricidal compounds with inhibitory effects on the digestive enzymes of arthropods are a safe alternative to the traditional neurotoxic pesticides used for control of the stored-product pests. In this work, we explored the properties of acarbose, the low molecular weight inhibitor of alpha-amylases (AI), as a novel acaricide candidate for protection of the stored products from infestation by Acarus siro (Acari: Acaridae). In vitro analysis revealed that AI blocked efficiently the enzymatic activity of digestive amylases of A. siro, and decreased the physiological capacity of mite's gut in utilizing a starch component of grain flour. In vivo experiments showed that AI suppressed the population growth of A. siro. The mites were kept for three weeks on experimental diet enriched by AI in concentration range of 0.005 to 0.25%. Population growth of A. siro was negatively correlated with the content of AI in the treated diet with a half-population dose of 0.125%. The suppressive effect of AIs on stored-product mites is discussed in the context of their potential application in GMO crops.
From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submicromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 Å resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3′ subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro
The stored-product mites are the most abundant and frequent group of pests living on the stored food products in Europe. They endanger public health since they produce allergens and transmit mycotoxin-producing fungi. Novel acaricidal compounds with inhibitory effects on the digestive enzymes of arthropods are a safe alternative to the traditional neurotoxic pesticides used for control of the stored-product pests. In this work, we explored the properties of acarbose, the low molecular weight inhibitor of alpha-amylases (AI), as a novel acaricide candidate for protection of the stored products from infestation by Acarus siro (Acari: Acaridae). In vitro analysis revealed that AI blocked efficiently the enzymatic activity of digestive amylases of A. siro, and decreased the physiological capacity of mite's gut in utilizing a starch component of grain flour. In vivo experiments showed that AI suppressed the population growth of A. siro. The mites were kept for three weeks on experimental diet enriched by AI in concentration range of 0.005 to 0.25%. Population growth of A. siro was negatively correlated with the content of AI in the treated diet with a half-population dose of 0.125%. The suppressive effect of AIs on stored-product mites is discussed in the context of their potential application in GMO crops.