Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Luconi, Michaela"
Sort by:
RNA Sequencing and Somatic Mutation Status of Adrenocortical Tumors: Novel Pathogenetic Insights
Abstract Context Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Objective To investigate the relationship between transcriptome profile and genetic background in a large series of adrenocortical tumors and identify new potential pathogenetic mechanisms. Design Cross-sectional study. Setting University Hospitals of the European Network for the Study of Adrenal Tumors (ENSAT). Patients We collected snap-frozen tissue from patients with adrenocortical tumors (n = 59) with known genetic background: 26 adenomas with Cushing syndrome (CS- cortisol-producing adenoma [CPA]), 17 adenomas with mild autonomous cortisol secretion (MACS-CPAs), 9 endocrine-inactive adenomas (EIAs), and 7 adrenocortical carcinomas (ACCs). Intervention Ribonucleic acid (RNA) sequencing. Main Outcome Measures Gene expression, long noncoding RNA (lncRNA) expression, and gene fusions. Correlation with genetic background defined by targeted Sanger sequencing, targeted panel- or whole-exome sequencing. Results Transcriptome analysis identified 2 major clusters for adenomas: Cluster 1 (n = 32) mainly consisting of MACS-CPAs with CTNNB1 or without identified driver mutations (46.9% of cases) and 8/9 EIAs; Cluster 2 (n = 18) that comprised CP-CPAs with or without identified driver mutation in 83.3% of cases (including all CS-CPAs with PRKACA mutation). Two CS-CPAs, 1 with CTNNB1 and 1 with GNAS mutation, clustered separately and relatively close to ACC. lncRNA analysis well differentiate adenomas from ACCs. Novel gene fusions were found, including AKAP13-PDE8A in one CS-CPA sample with no driver mutation. Conclusions MACS-CPAs and EIAs showed a similar transcriptome profile, independently of the genetic background, whereas most CS-CPAs clustered together. Still unrevealed molecular alterations in the cAMP/PKA or Wnt/beta catenin pathways might be involved in the pathogenesis of adrenocortical tumors.
The 3D in vitro Adrenoid cell model recapitulates the complexity of the adrenal gland
The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell–cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.
Functional Differences in Visceral and Subcutaneous Fat Pads Originate from Differences in the Adipose Stem Cell
Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K(+)-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.
GLP1 Exerts Paracrine Activity in the Intestinal Lumen of Human Colon
GLP1 produced in the upper part of the gut is released after food intake and acts by activating insulin secretion, but the role of GLP1 in the colon, where it is predominantly produced, remains unknown. Here we characterized the apical versus basolateral secretion of GLP1 and PYY and the paracrine mechanisms of action of these enterohormones in the human colon. We stimulated human colon tissue in different ex vivo models with meat peptone and we used immunofluorescence to study the presence of canonical and non-canonical receptors of GLP1. We found that PYY and GLP1 are secreted mainly at the gut lumen in unstimulated and stimulated conditions. We detected DPP4 activity and found that GLP1R and GCGR are widely expressed in the human colon epithelium. Unlike GLP1R, GCGR is not expressed in the lamina propria, but it is located in the crypts of Lieberkühn. We detected GLP1R expression in human colon cell culture models. We show that the apical secretion of PYY and GLP1 occurs in humans, and we provide evidence that GLP1 has a potential direct paracrine function through the expression of its receptors in the colon epithelium, opening new therapeutic perspectives in the use of enterohormones analogues in metabolic pathologies.
Evaluation and diagnostic potential of circulating extracellular vesicle-associated microRNAs in adrenocortical tumors
There is no available blood marker for the preoperative diagnosis of adrenocortical malignancy. The objective of this study was to investigate the expression of extracellular vesicle-associated microRNAs and their diagnostic potential in plasma samples of patients suffering from adrenocortical tumors. Extracellular vesicles were isolated either by using Total Exosome Isolation Kit or by differential centrifugation/ultracentrifugation. Preoperative plasma extracellular vesicle samples of 6 adrenocortical adenomas (ACA) and 6 histologically verified adrenocortical cancer (ACC) were first screened by Taqman Human Microarray A-cards. Based on the results of screening, two miRNAs were selected and validated by targeted quantitative real-time PCR. The validation cohort included 18 ACAs and 16 ACCs. Beside RNA analysis, extracellular vesicle preparations were also assessed by transmission electron microscopy, flow cytometry and dynamic light scattering. Significant overexpression of hsa-miR-101 and hsa-miR-483-5p in ACC relative to ACA samples has been validated. Receiver operator characteristics of data revealed dCT hsa-miR-483-5p normalized to cel-miR-39 to have the highest diagnostic accuracy (area under curve 0.965), the sensitivity and the specifity were 87.5 and 94.44, respectively. Extracellular vesicle-associated hsa-miR-483-5p thus appears to be a promising minimally invasive biomarker in the preoperative diagnosis of ACC but needs further validation in larger cohorts of patients.
Analysis of circulating microRNAs in adrenocortical tumors
Differential diagnosis of adrenocortical adenoma (ACA) and carcinoma is of pivotal clinical relevance, as the prognosis and clinical management of benign and malignant adrenocortical tumors (ACTs) is entirely different. Circulating microRNAs (miRNAs) are promising biomarker candidates of malignancy in several tumors; however, there are still numerous technical problems associated with their analysis. The objective of our study was to investigate circulating miRNAs in ACTs and to evaluate their potential applicability as biomarkers of malignancy. We have also addressed technical questions including the choice of profiling and reference gene used. A total of 25 preoperative plasma samples obtained from patients with ACAs and carcinomas were studied by microarray and quantitative real-time PCR. None of the three miRNAs (hsa-miR-192, hsa-mir-197 and hsa-miR-1281) found as differentially expressed in plasma samples in our microarray screening could be validated by quantitative real-time PCR. In contrast, of the selected eight miRNAs reported in the literature as differentially expressed in ACT tissues, five (hsa-miR-100, hsa-miR-181b, hsa-miR-184, hsa-miR-210 and hsa-miR-483-5p) showed a statistically significant overexpression in adrenocortical cancer vs adenoma when normalized on hsa-miR-16 as a reference gene. Receiver operator characteristic analysis of data revealed that the combination of dCThsa-miR-210 - dCThsa-miR-181b and dCThsa-miR-100/dCThsa-miR-181b showed the highest diagnostic accuracy (area under curve 0.87 and 0.85, respectively). In conclusion, we have found significant differences in expression of circulating miRNAs between ACAs and carcinomas, but their diagnostic accuracy is not yet high enough for clinical application. Further studies on larger cohorts of patients are needed to assess the diagnostic and prognostic potential application of circulating miRNA markers.
Assessment of VAV2 Expression Refines Prognostic Prediction in Adrenocortical Carcinoma
ContextAdrenocortical carcinoma (ACC) is a rare endocrine malignancy with overall poor prognosis. The Ki67 labeling index (LI) has a major prognostic role in localized ACC after complete resection, but its estimates may suffer from considerable intra- and interobserver variability. VAV2 overexpression induced by increased Steroidogenic Factor-1 dosage is an essential factor driving ACC tumor cell invasion.ObjectiveTo assess the prognostic role of VAV2 expression in ACC by investigation of a large cohort of patients.Design, Setting, and ParticipantsA total of 171 ACC cases (157 primary tumors, six local recurrences, eight metastases) from seven European Network for the Study of Adrenal Tumors centers were studied.Outcome MeasurementsH-scores were generated to quantify VAV2 expression. VAV2 expression was divided into two categories: low (H-score, <2) and high (H-score, ≥2). The Ki67 LI retrieved from patients' pathology records was also categorized into low (<20%) and high (≥20%). Clinical and immunohistochemical markers were correlated with progression-free survival (PFS) and overall survival (OS).ResultsVAV2 expression and Ki67 LI were significantly correlated with each other and with PFS and OS. Heterogeneity of VAV2 expression inside the same tumor was very low. Combined assessment of VAV2 expression and Ki67 LI improved patient stratification to low-risk and high-risk groups.ConclusionCombined assessment of Ki67 LI and VAV2 expression improves prognostic prediction in ACC.We studied VAV2 expression in a large, multicenter cohort of adrenocortical carcinoma cases and validated its role as a prognostic marker.
Emerging role of IGF1R and IR expression and localisation in adrenocortical carcinomas
Background The insulin-like growth factor 2 (IGF2) is overexpressed in 90% of adrenocortical carcinomas (ACC) and promotes cell proliferation via IGF1R and isoform A of insulin receptor (IRA). However, IGF2 role in ACC tumourigenesis has not been completely understood yet, and the contribution of IGF1R and IRA in mediating ACC cell growth has been poorly explored. This study aimed to investigate IGF1R and IR expression and localisation, including the expression of IR isoforms, in ACC and adrenocortical adenomas (ACA), and their role in IGF2-driven proliferation. Methods Immunohistochemistry staining of IGF1R and IR was performed on 118 ACC and 22 ACA to evaluate their expression and cellular localisation and statistical analyses were carried out to assess correlations with clinicopathological data. The expression of IRA and IRB in ACC and ACA tissues, ACC cell lines and ACC and ACA primary cultures was determined by RT-qPCR. To appraise the specific role of IGF1R and IR in mediating IGF2 mitogenic pathway, single and double silencing of receptors and their inhibition in 2 ACC cell lines derived from primary tumours (H295R and JIL-2266) and 2 derived from metastatic tumours (MUC-1 and TVBF-7) as well as in ACC and ACA primary cultures were performed. Results We found a higher IGF1R plasma membrane localisation in ACC compared to ACA. In ACC this localisation was associated with higher Ki67 and Weiss score. IR was expressed in about half of ACC and in all ACA but, in ACC, it was associated with higher Ki67 and Weiss score. RT-qPCR revealed that the prevalent isoform of IR was IRA in ACC and ACA, but not in normal adrenals. In ACC cell lines, double IGF1R + IR silencing reduced cell proliferation in JIL-2266, MUC-1 and TVBF-7 but not in H295R. In ACC, but not ACA, primary cultures, cell proliferation was reduced after IR but not IGF1R knockdown. Conclusions Overall, these data suggest that IGF1R localisation and IR expression represent new biomarkers predicting tumour aggressiveness, as well as possible molecular markers useful to patients’ stratification for more individualized IGF1R-IR targeted therapies or for novel pharmacological approaches specifically targeting IRA isoform.
COVID-19 and Obesity: An Epidemiologic Analysis of the Brazilian Data
Brazil has the second highest number of deaths due to COVID-19. Obesity has been associated with an important role in disease development and a worse prognosis. We aimed to explore epidemiological data from Brazil, discussing the potential relationships between obesity and COVID-19 severity in this country. We used a public database made available by the Ministry of Health of Brazil (182700 patients diagnosed with COVID-19). Descriptive statistics were used to characterize our database. Continuous data were expressed as median and analyzed by the nonparametric tests Mann–Whitney or one-sample Wilcoxon. The frequencies of categorical variables have been analyzed by chi-square tests of independence or goodness-of-fit. Among the number of deaths, 74% of patients were 60 years of age or older. Patients with obesity who died of COVID-19 were younger (59 years (IQR = 23)) than those without obesity (71 years (IQR = 20), P<0.001, and η2 = 0.0424). Women with obesity who died of COVID-19 were older than men (55 years (IQR = 25) vs. 50 (IQR = 22), P<0.001, and η2 = 0.0263). Furthermore, obesity increases the chances of needing intensive care unit (OR: 1.783, CI: 95%, and P<0.001), needing ventilatory support (OR: 1.537, CI: 95%, and P<0.001 and OR: 2.302, CI: 95%, and P<0.001, for noninvasive and invasive, respectively), and death (OR: 1.411, CI: 95%, and P<0.001) of patients hospitalized with COVID-19. Our analysis supports obesity as a significant risk factor for the development of more severe forms of COVID-19. The present study can direct a more effective prevention campaign and appropriate management of subjects with obesity.
Novel Germline PHD2 Variant in a Metastatic Pheochromocytoma and Chronic Myeloid Leukemia, but in the Absence of Polycythemia
Background: Pheochromocytoma (Pheo) and paraganglioma (PGL) are rare tumors, mostly resulting from pathogenic variants of predisposing genes, with a genetic contribution that now stands at around 70%. Germline variants account for approximately 40%, while the remaining 30% is attributable to somatic variants. Objective: This study aimed to describe a new PHD2 (EGLN1) variant in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) without polycythemia and to emphasize the need to adopt a comprehensive next-generation sequencing (NGS) panel. Methods: Genetic analysis was carried out by NGS. This analysis was initially performed using a panel of genes known for tumor predisposition (EGLN1, EPAS1, FH, KIF1Bβ, MAX, NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, TMEM127, and VHL), followed initially by SNP-CGH array, to exclude the presence of the pathogenic Copy Number Variants (CNVs) and the loss of heterozygosity (LOH) and subsequently by whole exome sequencing (WES) comparative sequence analysis of the DNA extracted from tumor fragments and peripheral blood. Results: We found a novel germline PHD2 (EGLN1) gene variant, c.153G>A, p.W51*, in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) in the absence of polycythemia. Conclusions: According to the latest guidelines, it is mandatory to perform genetic analysis in all Pheo/PGL cases regardless of phenotype. In patients with metastatic disease and no evidence of polycythemia, we propose testing for PHD2 (EGLN1) gene variants. A possible correlation between PHD2 (EGLN1) pathogenic variants and CML clinical course should be considered.