Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Luebke, Anna"
Sort by:
An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds
The clouds in the Atlantic trade-wind region are known to have an important impact on the global climate system. Acquiring a comprehensive characterization of these clouds based on observations is a challenge, but it is necessary for the evaluation of their representation in models. An exploration of how the macrophysical and microphysical cloud properties and organization of the cloud field impact the large-scale cloud radiative forcing is presented here. In situ measurements of the cloud radiative effects based on the Broadband AirCrAft RaDiometer Instrumentation (BACARDI) on board the High Altitude and LOng Range Research Aircraft (HALO) and cloud observations from the GOES-16 satellite collected during the ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte (EUREC4A) campaign demonstrate what drives the cloud radiative effects in shallow trade-wind clouds. We find that the solar and terrestrial radiative effects of these clouds are largely driven by their macrophysical properties (cloud fraction and a scene-averaged liquid water path). We also conclude that the microphysical properties, cloud top height and organization of the cloud field increasingly determine the cloud radiative effects as the cloud fraction increases.
The origin of midlatitude ice clouds and the resulting influence on their microphysical properties
The radiative role of ice clouds in the atmosphere is known to be important, but uncertainties remain concerning the magnitude and net effects. However, through measurements of the microphysical properties of cirrus clouds, we can better characterize them, which can ultimately allow for their radiative properties to be more accurately ascertained. Recently, two types of cirrus clouds differing by formation mechanism and microphysical properties have been classified – in situ and liquid origin cirrus. In this study, we present observational evidence to show that two distinct types of cirrus do exist. Airborne, in situ measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided according to their origin type. The key features that set liquid origin cirrus apart from the in situ origin cirrus are higher frequencies of high IWC ( > 100 ppmv), higher Nice values, and larger ice crystals. A vertical distribution of Nice shows that the in situ origin cirrus clouds exhibit a median value of around 0.1 cm−3, while the liquid origin concentrations are slightly, but notably higher. The median sizes of the crystals contributing the most mass are less than 200 µm for in situ origin cirrus, with some of the largest crystals reaching 550 µm in size. The liquid origin cirrus, on the other hand, were observed to have median diameters greater than 200 µm, and crystals that were up to 750 µm. An examination of these characteristics in relation to each other and their relationship to temperature provides strong evidence that these differences arise from the dynamics and conditions in which the ice crystals formed. Additionally, the existence of these two groups in cirrus cloud populations may explain why a bimodal distribution in the IWC-temperature relationship has been observed. We hypothesize that the low IWC mode is the result of in situ origin cirrus and the high IWC mode is the result of liquid origin cirrus.
Evaluating the representation of Arctic cirrus solar radiative effects in the Integrated Forecasting System with airborne measurements
In two case studies, airborne measurements of broadband solar irradiances above and below Arctic cirrus are compared to simulations of the Integrated Forecasting System (IFS) operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) using offline runs of ECMWF's operational radiation scheme, “ecRad”. Furthermore, independent of the solar irradiances, cirrus properties are derived from collocated airborne active remote sensing observations to evaluate the optical and microphysical parameterizations in ecRad. The data were collected in the central Arctic over sea ice (81–90° N) with instrumentation installed aboard the High Altitude LOng range research aircraft (HALO) during a campaign in March and April 2022. Among others, the HALO instrumentation included upward- and downward-looking pyranometers to measure broadband solar irradiances, a cloud radar, and a multi-wavelength water vapour differential absorption lidar. Extended horizontal flight legs above and below single-layer cirrus were performed. The solar radiation measurements are used to evaluate ecRad in two case studies of optically thin and thick cirrus, with an average transmissivity of 0.9 and 0.6, respectively. Different ice optics parameterizations optionally available in ecRad are applied to test the match between simulation and measurements. Furthermore, the IFS-predicted ice water content and ice effective radius are replaced by values retrieved with the radar and lidar. The choice of ice optics parameterizations does not significantly improve the model–measurement agreement. However, introducing the retrieved ice microphysical properties brings measured and modelled irradiances in closer agreement for the optically thin cirrus, while the optically thick cirrus case is simulated as too thick. It is concluded that the ice water content simulated by the IFS is realistic and that the mismatch between observed and simulated solar irradiances mostly originates from the assumed or parameterized ice effective radius.
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.
A WORKSHOP ON REMOTE SENSING OF THE ATMOSPHERE IN ANTICIPATION OF THE EARTHCARE SATELLITE MISSION
The workshop focused on the use of remote sensing instrumentation for atmospheric observations, with special attention paid to the National Aeronautics and Space Administration’s (NASA) A-Train constellation of Earth observing satellites and the upcoming joint EarthCARE satellite mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). By virtue of their ability to resolve the same processes that the satellites measure and on the same scale, the combination of these models with space-based active remote sensing offers the best possibility for advancing our understanding of the climate system. Since 2011, the EECLAT project has supported and united a community of scientists who use spaceborne observations from the A-Train to do research and learn about the Earth’s atmosphere. [...]the use of high-resolution simulations was also proposed as a method for validation of the cloud and aerosol products. [...]the effects of cirrus clouds have been poorly represented due to difficulties in obtaining accurate information concerning their ice water content and the shape, density, and orientation of their ice crystals, all of which have an impact on their radiative effects.
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
The instrumentation of the High Altitude and Long Range (HALO) research aircraft is extended by the new Broadband AirCrAft RaDiometer Instrumentation (BACARDI) to quantify the radiative energy budget. Two sets of pyranometers and pyrgeometers are mounted to measure upward and downward solar (0.3–3 µm) and thermal–infrared (3–100 µm) irradiances. The radiometers are installed in a passively ventilated fairing to reduce the effects of the dynamic environment, e.g., fast changes in altitude and temperature. The remaining thermal effects range up to 20 W m−2 for the pyranometers and 10 W m−2 for the pyrgeometers. Using data collected by BACARDI during a night flight, it is demonstrated that the dynamic components of the offsets can be parameterized by the rate of change of the radiometer sensor temperatures, providing a greatly simplifying correction of the dynamic thermal effects. The parameterization provides a linear correction function (200–500 W m−2 K−1 s) that depends on the radiometer type and the mounting position of the radiometer on HALO. Furthermore, BACARDI measurements from the EUREC4A (Elucidating the Role of Clouds—Circulation Coupling in Climate) field campaign are analyzed to characterize the performance of the radiometers and to evaluate all corrections applied in the data processing. Vertical profiles of irradiance measurements up to 10 km altitude show that the thermal offset correction limits the bias due to temperature changes to values below 10 W m−2. Measurements with BACARDI during horizontal, circular flight patterns in cloud-free conditions demonstrate that the common geometric attitude correction of the solar downward irradiance provides reliable measurements in this typical flight section of EUREC4A, even without active stabilization of the radiometer.
A comprehensive in situ and remote sensing data set collected during the HALO–( ) 3 aircraft campaign
The HALO–(𝒜𝒞)3 aircraft campaign was carried out in March and April 2022 over the Norwegian and Greenland seas, the Fram Strait, and the central Arctic Ocean. Three research aircraft – the High Altitude and Long Range Research Aircraft (HALO), Polar 5, and Polar 6 – performed 54 partly coordinated research flights on 23 flight days over areas of open ocean, the marginal sea ice zone (MIZ), and the central Arctic sea ice. The general objective of the research flights was to quantify the evolution of air mass properties during moist and warm-air intrusions (WAIs) and cold-air outbreaks (CAOs). To obtain a comprehensive data set, the three aircraft operated following different strategies. HALO was equipped with active and passive remote sensing instruments and dropsondes to cover the regional evolution of cloud and thermodynamic processes. Polar 5 carried a similar remote sensing payload to HALO, and Polar 6 was instrumented with in situ cloud, aerosol, and trace gas instruments focusing on the initial air mass transformation close to the MIZ. The processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets and listed in aircraft-separated collections for HALO (Ehrlich et al., 2024a, https://doi.org/10.1594/PANGAEA.968885), Polar 5 (Mech et al., 2024a, https://doi.org/10.1594/PANGAEA.968883), and Polar 6 (Herber et al., 2024, https://doi.org/10.1594/PANGAEA.968884). A detailed overview of the available data sets is provided here. Furthermore, the campaign-specific instrument setup, the data processing, and quality are summarized. Based on measurements conducted during a specific CAO, it is shown that the scientific analysis of the HALO–(𝒜𝒞)3 data benefits from the coordinated operation of the three aircraft.
EUREC4A's HALO
As part of the EUREC4A (Elucidating the role of cloud–circulation coupling in climate) field campaign, the German research aircraft HALO (High Altitude and Long Range Research Aircraft), configured as a cloud observatory, conducted 15 research flights in the trade-wind region east of Barbados in January and February 2020. Narrative text, aircraft state data, and metadata describing HALO's operation during the campaign are provided. Each HALO research flight is segmented by timestamp intervals into standard elements to aid the consistent analysis of the flight data. Photographs from HALO's cabin and animated satellite images synchronized with flight tracks are provided to visually document flight conditions. As a comprehensive product from the remote sensing observations, a multi-sensor cloud mask product is derived and quantifies the incidence of clouds observed during the flights. In addition, to lower the threshold for new users of HALO's data, a collection of use cases is compiled into an online book, How to EUREC4A, included as an asset with this paper. This online book provides easy access to most of EUREC4A's HALO data through an intake catalogue. Code and data are freely available at the locations specified in Table .
A comprehensive in situ and remote sensing data set collected during the HALO-.sup.3 aircraft campaign
The HALO-(ðð).sup.3 aircraft campaign was carried out in March and April 2022 over the Norwegian and Greenland seas, the Fram Strait, and the central Arctic Ocean. Three research aircraft - the High Altitude and Long Range Research Aircraft (HALO), Polar 5, and Polar 6 - performed 54 partly coordinated research flights on 23 flight days over areas of open ocean, the marginal sea ice zone (MIZ), and the central Arctic sea ice. The general objective of the research flights was to quantify the evolution of air mass properties during moist and warm-air intrusions (WAIs) and cold-air outbreaks (CAOs). To obtain a comprehensive data set, the three aircraft operated following different strategies. HALO was equipped with active and passive remote sensing instruments and dropsondes to cover the regional evolution of cloud and thermodynamic processes. Polar 5 carried a similar remote sensing payload to HALO, and Polar 6 was instrumented with in situ cloud, aerosol, and trace gas instruments focusing on the initial air mass transformation close to the MIZ. The processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets and listed in aircraft-separated collections for HALO (Ehrlich et al., 2024a,
EUREC.sup.4A's HALO
As part of the EUREC.sup.4 A (Elucidating the role of cloud-circulation coupling in climate) field campaign, the German research aircraft HALO (High Altitude and Long Range Research Aircraft), configured as a cloud observatory, conducted 15 research flights in the trade-wind region east of Barbados in January and February 2020. Narrative text, aircraft state data, and metadata describing HALO's operation during the campaign are provided. Each HALO research flight is segmented by timestamp intervals into standard elements to aid the consistent analysis of the flight data. Photographs from HALO's cabin and animated satellite images synchronized with flight tracks are provided to visually document flight conditions. As a comprehensive product from the remote sensing observations, a multi-sensor cloud mask product is derived and quantifies the incidence of clouds observed during the flights. In addition, to lower the threshold for new users of HALO's data, a collection of use cases is compiled into an online book, How to EUREC4A, included as an asset with this paper. This online book provides easy access to most of EUREC.sup.4 A's HALO data through an intake catalogue. Code and data are freely available at the locations specified in Table 6.