Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
142 result(s) for "Luethi, M"
Sort by:
Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland
We used time‐lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbræ and its proglacial ice mélange. The mélange behaves as a weak, granular ice shelf whose rheology varies seasonally. Sea ice growth in winter stiffens the mélange matrix by binding iceberg clasts together, ultimately preventing the calving of full‐glacier‐thickness icebergs (the dominant style of calving) and enabling a several kilometer terminus advance. Each summer the mélange weakens and the terminus retreats. The mélange remains strong enough, however, to be largely unaffected by ocean currents (except during calving events) and to influence the timing and sequence of calving events. Furthermore, motion of the mélange is highly episodic: between calving events, including the entire winter, it is pushed down fjord by the advancing terminus (at ∼40 m d−1), whereas during calving events it can move in excess of 50 × 103 m d−1 for more than 10 min. By influencing the timing of calving events, the mélange contributes to the glacier's several kilometer seasonal advance and retreat; the associated geometric changes of the terminus area affect glacier flow. Furthermore, a force balance analysis shows that large‐scale calving is only possible from a terminus that is near floatation, especially in the presence of a resistive ice mélange. The net annual retreat of the glacier is therefore limited by its proximity to floatation, potentially providing a physical mechanism for a previously described near‐floatation criterion for calving.
NSAID treatment with meloxicam enhances peripheral stem cell mobilization in myeloma
Chemotherapy with G–CSF is used to mobilize peripheral stem cells in multiple myeloma (MM) patients, with plerixafor as a rescue strategy for poorly mobilizing patients. Preclinical studies suggested that the nonsteroidal anti-inflammatory drug meloxicam enhances the mobilization of CD34 + cells. In this single-center study, we evaluated whether adding meloxicam to chemotherapy/G–CSF mobilization increases peripheral hematopoietic CD34 + cell levels and reduces the need of using plerixafor. We prospectively compared two consecutive cohorts of MM patients in first remission mobilized with G–CSF and non-myelosuppressive chemotherapy with vinorelbine or gemcitabine. The second cohort additionally received oral meloxicam. The cohorts comprised 84 patients without meloxicam (−M) and 66 patients with meloxicam (+M). Meloxicam was well tolerated and associated with similar hematologic engraftment after transplantation and equal survival rates. However, the meloxicam group had higher CD34 + cell levels on day 8 of the mobilization procedure (53 200 versus 35 600 CD34 + cells/mL; P =0.007), and fewer patients needed >1 collection day (+M: 6 (9%) patients versus −M: 16 (19%) patients; P =0.04). This resulted in reduced plerixafor administrations (+M: 7 (11%) patients versus −M: 18 (21%) patients; P =0.03) and less costs. Our data suggest that meloxicam enhances the mobilization of hematopoietic CD34 + blood cells in MM patients.
Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations
Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA) for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO) index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.
A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery
The rapid drainage of supraglacial lakes introduces large pulses of meltwater to the subglacial environment and creates moulins, surface-to-bed conduits for future melt. Introduction of water to the subglacial system has been shown to affect ice flow, and modeling suggests that variability in water supply and delivery to the subsurface play an important role in the development of the subglacial hydrologic system and its ability to enhance or mitigate ice flow. We developed a fully automated method for tracking meltwater and rapid drainages in large (> 0.125 km2) perennial lakes and applied it to a 10 yr time series of ETM+ and MODIS imagery of an outlet glacier flow band in West Greenland. Results indicate interannual variability in maximum coverage and spatial evolution of total lake area. We identify 238 rapid drainage events, occurring most often at low (< 900 m) and middle (900–1200 m) elevations during periods of net filling or peak lake coverage. We observe a general progression of both lake filling and draining from lower to higher elevations but note that the timing of filling onset, peak coverage, and dissipation are also variable. Lake coverage is sensitive to air temperature, and warm years exhibit greater variability in both coverage evolution and rapid drainage. Mid-elevation drainages in 2011 coincide with large surface velocity increases at nearby GPS sites, though the relationships between ice-shed-scale dynamics and meltwater input are still unclear.
Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy
A range of englacial temperature measurements was acquired in the Monte Rosa area at the border of Switzerland and Italy in the years 1982, 1991, 1994, 1995, 1999, 2000, 2003, 2007 and 2008. Englacial temperatures revealed no evidence of warming at the firn saddle of Colle Gnifetti at 4452 m a.s.l. between 1982 and 1991, the 1991 to 2000 period showed an increase of 0.05 °C per year at a depth of 20 m. From 2000 to 2008 a further increase of 1.3 °C or 0.16 °C per year was observed, indicating that the amount of infiltrating and refreezing meltwater at Colle Gnifetti has probably increased since 2000. The measured temperatures give clear evidence of firn warming since 1991. This is confirmed by five existing boreholes with measured temperature down to bedrock, which were drilled in 1982, 1995, 2003 and 2005. All the observed temperature profiles show a slight bending to warmer temperatures in their uppermost part indicating a warming of the firn, which can be related to the observed atmospheric warming in the 20th century. However, the drilling sites on Colle Gnifetti are still located in the recrystallisation-infiltration zone. A much stronger warming of 6.8 °C or 0.4 °C per year was found at locations beneath Colle Gnifetti on Grenzgletscher from 1991 to 2008. This warming is one order of magnitude greater than the atmospheric warming and can be explained only by a strong increase in the latent heat input by infiltrating and refreezing meltwater. The observations indicate that since 1991, an important firn area beneath Colle Gnifetti has already undergone a firn facies change from the recrystallisation-infiltration to the cold infiltration zone due to an increasing supply of surface melt energy.
Evaluation of energy saving strategies in heavily used rail networks by implementing an integrated real-time rescheduling system
The Swiss Federal Railways in cooperation with the Swiss Federal Institute of Technology ETH has developed an integrated real-time rescheduling system to simultaneously improve rail network capacity and punctuality. The approach combines real-time rescheduling (performed after a delay or incident) with very precise train operation facilitated by providing dynamic schedule information to train drivers. This information enables train drivers to change their driving behaviour and adjust their speed based on the new schedule. This can significantly reduce the number of unnecessary decelerations or stops due to conflicts. Consequently, traffic flow is improved. In addition, also energy consumption is reduced because unintended re-accelerations are minimised. This paper describes results of an analysis performed to calculate the energy savings possible using the integrated real-time rescheduling system.
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Interpreting Ice Anisotropy of Greenland's Fastest Outlet Glacier Using Basal Icequakes
Ice anisotropy can have significant impact on ice rheology and flow dynamics. However, a lack of in situ measurements limits the validation and incorporation of anisotropy, so most ice flow models assume isotropic ice. Especially observations of anisotropy in fast‐flowing ice streams are scarce. Here, we present an assessment of anisotropic ice fabric inside a fast‐flowing Greenlandic ice stream. Seismic anisotropy, measured through shear wave splitting in basal icequakes, reveals an anisotropic horizontal cone fabric. The corresponding fabric tensor suggests that ice likely deforms at least seven times easier along‐flow than across‐flow. The presence of such a strong anisotropic fabric within the fast‐flowing ice stream emphasizes that assuming isotropic fabric in ice flow models likely introduces significant inaccuracies. Furthermore, variations between our observations and measurements from other regions highlight the necessity of comprehensive in situ data to better understand spatial variations in ice anisotropy and how fabrics develop.
Rejecting cosmic background for exclusive charged current quasi elastic neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector
Cosmic ray (CR) interactions can be a challenging source of background for neutrino oscillation and cross-section measurements in surface detectors. We present methods for CR rejection in measurements of charged-current quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton in the final state, measured using liquid argon time projection chambers (LArTPCs). Using a sample of cosmic data collected with the MicroBooNE detector, mixed with simulated neutrino scattering events, a set of event selection criteria is developed that produces an event sample with minimal contribution from CR background. Depending on the selection criteria used a purity between 50 and 80% can be achieved with a signal selection efficiency between 50 and 25%, with higher purity coming at the expense of lower efficiency. While using a specific dataset and selection criteria values optimized for the MicroBooNE detector, the concepts presented here are generic and can be adapted for various studies of exclusive \\[\\nu _{\\mu }\\] CCQE interactions in LArTPCs.
Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming
Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.