Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
61 result(s) for "Luger, Rodrigo"
Sort by:
eleanor: An Open-source Tool for Extracting Light Curves from the TESS Full-frame Images
During its two-year prime mission, the Transiting Exoplanet Survey Satellite (TESS) will perform a time-series photometric survey covering over 80% of the sky. This survey comprises observations of 26 24° × 96° sectors that are each monitored continuously for approximately 27 days. The main goal of TESS is to find transiting planets around 200,000 pre-selected stars for which fixed aperture photometry is recorded every two minutes. However, TESS is also recording and delivering full-frame images (FFIs) of each detector at a 30-minutes cadence. We have created an open-source tool, eleanor, to produce light curves for objects in the TESS FFIs. Here, we describe the methods used in eleanor to produce light curves that are optimized for planet searches. The tool performs background subtraction; aperture and point-spread function photometry; decorrelation of instrument systematics; and cotrending using principal component analysis. We recover known transiting exoplanets in the FFIs to validate the pipeline and perform a limited search for new planet candidates in Sector 1. Our tests indicate that eleanor produces light curves with significantly less scatter than other tools that have been used in the literature. Cadence-stacked images, and raw and detrended eleanor light curves for each analyzed star will be hosted on Mikulski Archive for Space Telescopes, with planet candidates on ExoFOP-TESS as Community TESS Objects of Interest. This work confirms the promise that the TESS FFIs will enable the detection of thousands of new exoplanets and a broad range of time domain astrophysics.
VPLanet: The Virtual Planet Simulator
We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled to simultaneously simulate the evolution of terrestrial planets, gaseous planets, and stars. The code is validated by reproducing a selection of observations and past results. VPLanet is written in C and designed so that the user can choose the physics modules to apply to an individual object at runtime without recompiling, i.e., a single executable can simulate the diverse phenomena that are relevant to a wide range of planetary and stellar systems. This feature is enabled by matrices and vectors of function pointers that are dynamically allocated and populated based on user input. The speed and modularity of VPLanet enables large parameter sweeps and the versatility to add/remove physical phenomena to assess their importance. VPLanet is publicly available from a repository that contains extensive documentation, numerous examples, Python scripts for plotting and data management, and infrastructure for community input and future development.
Water Loss from Young Planets
Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.
VPLanet
We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled to simultaneously simulate the evolution of terrestrial planets, gaseous planets, and stars. The code is validated by reproducing a selection of observations and past results. VPLanet is written in C and designed so that the user can choose the physics modules to apply to an individual object at runtime without recompiling, i.e., a single executable can simulate the diverse phenomena that are relevant to a wide range of planetary and stellar systems. This feature is enabled by matrices and vectors of function pointers that are dynamically allocated and populated based on user input. The speed and modularity of VPLanet enables large parameter sweeps and the versatility to add/remove physical phenomena to assess their importance. VPLanet is publicly available from a repository that contains extensive documentation, numerous examples, Python scripts for plotting and data management, and infrastructure for community input and future development.
On The Evolution, Detection, and Characterization of Small Planets in the Habitable Zones of M Dwarfs
As the technology behind instrumentation in astronomy improves, so too does our ability to detect and characterize worlds outside our solar system. We are currently witnessing a revolution in exoplanet science: for the past three decades, the number of known planets orbiting other stars has grown exponentially, showing no signs of tapering off. We now know of dozens of small planets in the habitable zones of their stars, and this number is expected to grow with upcoming survey missions such as the Transiting Exoplanet Survey Satellite (TESS) and the PLAnetary Transits and Oscillations telescope (PLATO). Improving commensurately with our capacity to detect these planets is our ability to characterize them. Missions such as the James Webb Space Telescope (JWST) and subsequent generations of space-based telescopes will be capable of characterizing these planets' atmospheres and searching for molecular signatures of habitability and life. Given the large number of potentially habitable planets we will soon discover, knowing which targets to prioritize for follow-up observations is paramount to furthering our goal of understanding the potential for habitability of exoplanets. Once data becomes available, its interpretation will rely heavily on a physical understanding of the processes that contribute to making a planet habitable (or not). Models of the evolutionary processes of potentially habitable planets can therefore improve target selection for biosignature searches and enhance the science return from terrestrial planet characterization. In this dissertation, I develop theoretical models of the evolution of the atmospheres and surface water inventories of planets in the habitable zones of low mass stars. While these stars currently offer the best opportunity to characterize potentially habitable planets, my work shows that vigorous atmospheric escape from these planets due to intense stellar activity could render many of them uninhabitable. I discuss observational signatures of the escape process and best case scenarios for planets around low mass stars, including the possibility that planets that form with substantial primordial atmospheres of hydrogen and helium could weather the active phase of the host star without substantial devolatilization. I also refine existing techniques to detect and characterize exoplanets, with particular emphasis on small planets in the habitable zones of low mass stars. I introduce EVEREST, a pipeline to remove instrumental noise from photometric datasets and enable the detection of planet transit signals that would otherwise be hidden in the noise. Furthermore, I develop two novel techniques for the detection and characterization of potentially habitable exoplanets: the exo-auroral method, which relies on the spectroscopic detection of auroral emission from terrestrial planets, and planet-planet occultations, wherein an exoplanet occults another planet in the same system, imparting a small photometric signal on the system's light curve. I show how the next generation of telescopes may enable the application of both techniques to planets in the habitable zones of low mass stars, uncovering detailed information about their orbits and surface/atmospheric properties. I discuss all of my results in the context of TRAPPIST-1, a nearby low mass star hosting seven transiting planets, three of which are in the habitable zone. This and similar soon-to-be discovered systems will likely revolutionize our understanding of exoplanets, habitability, and astrobiology in general.
A seven-planet resonant chain in TRAPPIST-1
The TRAPPIST-1 system is the first transiting planet system found orbiting an ultracool dwarf star 1 . At least seven planets similar in radius to Earth were previously found to transit this host star 2 . Subsequently, TRAPPIST-1 was observed as part of the K2 mission and, with these new data, we report the measurement of an 18.77 day orbital period for the outermost transiting planet, TRAPPIST-1 h, which was previously unconstrained. This value matches our theoretical expectations based on Laplace relations 3 and places TRAPPIST-1 h as the seventh member of a complex chain, with three-body resonances linking every member. We find that TRAPPIST-1 h has a radius of 0.752 R ⊕ and an equilibrium temperature of 173 K. We have also measured the rotational period of the star to be 3.3 days and detected a number of flares consistent with a low-activity, middle-aged, late M dwarf. Orbital parameters for the seventh Earth-sized transiting planet around star TRAPPIST-1 are reported, along with an investigation into the complex three-body resonances linking every member of this planetary system.
Warm Jupiters Beyond the Tidal Synchronization Limit May Exhibit a Wide Range of Secondary Eclipse Depths
With JWST we can now characterize the atmospheres of planets on longer orbital planets, but this moves us into a regime where we cannot assume that tidal forces from the star have eroded planets' obliquities and synchronized their rotation rates. These rotation vectors may be tracers of formation and evolution histories and also enable a range of atmospheric circulation states. Here we delineate the orbital space over which tidal synchronization and alignment assumptions may no longer apply and present three-dimensional atmospheric models of a hypothetical warm Jupiter over a range of rotation rates and obliquities. We simulate the secondary eclipses of this planet for different possible viewing orientations and times during its orbital, seasonal cycle. We find that the eclipse depth can be strongly influenced by rotation rate and obliquity through the timing of the eclipse relative to the planet's seasonal cycle, and advise caution in attempting to derive properties such as albedo or day-night transport from this measurement. We predict that if warm Jupiters beyond the tidal limit have intrinsic diversity in their rotation vectors, then it will manifest itself as dispersion in their secondary eclipse depths. We explore eclipse mapping as a way to uniquely constrain the rotation vector of warm Jupiters but find that the associated signals are likely at the edge of JWST performance. Nevertheless, as JWST begins to measure the secondary eclipses of longer orbital period planets, we should expect to observe the consequences of a wider range of rotation states and circulation patterns.
Efficient and precise transit light curves for rapidly-rotating, oblate stars
We derive solutions to transit light curves of exoplanets orbiting rapidly-rotating stars. These stars exhibit significant oblateness and gravity darkening, a phenomenon where the poles of the star have a higher temperature and luminosity than the equator. Light curves for exoplanets transiting these stars can exhibit deviations from those of slowly-rotating stars, even displaying significantly asymmetric transits depending on the system's spin-orbit angle. As such, these phenomena can be used as a protractor to measure the spin-orbit alignment of the system. In this paper, we introduce a novel semi-analytic method for generating model light curves for gravity-darkened and oblate stars with transiting exoplanets. We implement the model within the code package starry and demonstrate several orders of magnitude improvement in speed and precision over existing methods. We test the model on a TESS light curve of WASP-33, whose host star displays rapid rotation (\\(v \\sin i_* = 86.4\\) km/s). We subtract the host's \\(\\delta\\)-Scuti pulsations from the light curve, finding an asymmetric transit characteristic of gravity darkening. We find the projected spin orbit angle is consistent with Doppler tomography and constrain the true spin-orbit angle of the system as \\(\\varphi=108.3^{+19.0}_{-15.4}\\)~\\(^{\\circ}\\). We demonstrate the method's uses in constraining spin-orbit inclinations of such systems photometrically with posterior inference. Lastly, we note the use of such a method for inferring the dynamical history of thousands of such systems discovered by TESS.
Applying the metallicity-dependent binary fraction to double white dwarf formation: Implications for LISA
Short-period double white dwarf (DWD) binaries will be the most prolific source of gravitational waves (GWs) for the Laser Interferometer Space Antenna (LISA). DWDs with GW frequencies below \\(\\sim1\\) mHz will be the dominant contributor to a stochastic foreground caused by overlapping GW signals. Population modeling of Galactic DWDs typically assumes a binary fraction of 50% and a log-uniform Zero Age Main Sequence (ZAMS) orbital period distribution. However, recent observations have shown that the binary fraction of close, solar-type stars exhibits a strong anti-correlation with metallicity which modulates the ZAMS orbital period distribution below \\(10^4\\) days. In this study we perform the first simulation of the Galactic DWD population observable by LISA which incorporates an empirically-derived metallicity-dependent binary fraction, using the binary population synthesis suite COSMIC and a metallicity-dependent star formation history. We compare two models: one which assumes a metallicity-dependent binary fraction, and one with a binary fraction of 50%. We repeat our analysis for three different assumptions for Roche-lobe overflow interactions. We find that while metallicity impacts the evolution and intrinsic properties of our simulated DWD progenitor binaries, the LISA-resolvable populations of the two models remain roughly indistinguishable. However, the size of the total Galactic DWD population orbiting in the LISA frequency band is reduced by more than half when accounting for a metallicity-dependent binary fraction for two of our four variations, which also lowers the effective foreground. The LISA population remains unchanged in number for two variations, highlighting the sensitivity of the population to binary evolution prescriptions.
Flaring Latitudes in Ensembles of Low Mass Stars
The distribution of small-scale magnetic fields in stellar photospheres is an important ingredient in our understanding of the magnetism of low mass stars. Their spatial distribution connects the field generated in the stellar interior with the outer corona and the large scale field, and thereby affects the space weather of planets. Unfortunately, we lack techniques that can locate them on most low-mass stars. One strategy is to localize field concentrations using the flares that occur in their vicinity. We explore a new method that adapts the spot simulation software fleck to study the modulation of flaring times as a function of active latitude. We use empirical relations to construct flare light curves similar to those available from Kepler and the Transiting Exoplanet Survey Satellite (TESS), search them for flares, and use the waiting times between flares to determine the location of active latitudes. We find that the mean and standard deviation of the waiting time distribution provide a unique diagnostic of flaring latitudes as a function of the number of active regions. Latitudes are best recovered when stars have three or less active regions that flare repeatedly, and active latitude widths below 20 deg; when either increases, the information about the active latitude location is gradually lost. We demonstrate our technique on a sample of flaring G dwarfs observed with the Kepler satellite, and furthermore suggest that combining ensemble methods for spots and flares could overcome the limitations of each individual technique for the localization of surface magnetic fields.