Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
11,343
result(s) for
"Luis, Ana S."
Sort by:
A single sulfatase is required to access colonic mucin by a gut bacterium
by
Baslé, Arnaud
,
Oscarson, Stefan
,
Glowacki, Robert W. P.
in
631/326/1320
,
631/326/325/2482
,
631/45/221
2021
Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium
1
. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex
O
-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin
O
-glycans by the human gut symbiont
Bacteroides thetaiotaomicron
. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in
O
-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated
O
-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization
2
and diseases such as inflammatory bowel disease
3
.
A single sulfatase produced by a bacterium found in the human colon is essential for degradation of sulfated
O
-glycans in secreted mucus.
Journal Article
Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron
by
Göteborgs Universitet = University of Gothenburg (GU)
,
Madlambayan, Emily
,
Architecture et fonction des macromolécules biologiques (AFMB) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
in
Bacteria
,
Bacteroides thetaiotaomicron
,
Bacteroides thetaiotaomicron - metabolism
2024
ABSTRACT Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques— a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)—degrades mucin glycoproteins or their component O -linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and β1,4-galactosidase activities. There was a lack of detectable sulfatase and weak β1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron . This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD. IMPORTANCE An important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron . Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.
Journal Article
Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota
2022
Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.Comprehensive structural biology analysis of seven members of the S1 carbohydrate sulfatase family derived from human gut microbiome Bacteroides reveals mechanisms of glycan recognition and sulfate hydrolysis.
Journal Article
GC‐MS metabolomics‐based approach for the identification of a potential VOC‐biomarker panel in the urine of renal cell carcinoma patients
2017
The analysis of volatile organic compounds (VOCs) emanating from biological samples appears as one of the most promising approaches in metabolomics for the study of diseases, namely cancer. In fact, it offers advantages, such as non‐invasiveness and robustness for high‐throughput applications. The purpose of this work was to study the urinary volatile metabolic profile of patients with renal cell carcinoma (RCC) (n = 30) and controls (n = 37) with the aim of identifying a potential specific urinary volatile pattern as a non‐invasive strategy to detect RCC. Moreover, the effect of some confounding factors such as age, gender, smoking habits and body mass index was evaluated as well as the ability of urinary VOCs to discriminate RCC subtypes and stages. A headspace solid‐phase microextraction/gas chromatography–mass spectrometry‐based method was performed, followed by multivariate data analysis. A variable selection method was applied to reduce the impact of potential redundant and noisy chromatographic variables, and all models were validated by Monte Carlo cross‐validation and permutation tests. Regarding the effect of RCC on the urine VOCs composition, a panel of 21 VOCs descriptive of RCC was defined, capable of discriminating RCC patients from controls in principal component analysis. Discriminant VOCs were further individually validated in two independent samples sets (nine RCC patients and 12 controls, seven RCC patients with diabetes mellitus type 2) by univariate statistical analysis. Two VOCs were found consistently and significantly altered between RCC and controls (2‐oxopropanal and, according to identification using NIST14, 2,5,8‐trimethyl‐1,2,3,4‐tetrahydronaphthalene‐1‐ol), strongly suggesting enhanced potential as RCC biomarkers. Gender, smoking habits and body mass index showed negligible and age‐only minimal effects on the urinary VOCs, compared to the deviations resultant from the disease. Moreover, in this cohort, the urinary volatilome did not show ability to discriminate RCC stages and histological subtypes. The results validated the value of urinary volatilome for the detection of RCC and advanced with the identification of potential RCC urinary biomarkers.
Journal Article
Stereological study of organelle distribution in human mature oocytes
2024
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Journal Article
Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci
by
Baslé, Arnaud
,
Briliūtė, Justina
,
Urbanowicz, Paulina A.
in
631/326/2565/2134
,
631/326/41/2482
,
631/45
2019
Glycans are the major carbon sources available to the human colonic microbiota. Numerous
N
-glycosylated proteins are found in the human gut, from both dietary and host sources, including immunoglobulins such as IgA that are secreted into the intestine at high levels. Here, we show that many mutualistic gut
Bacteroides
spp. have the capacity to utilize complex
N
-glycans (CNGs) as nutrients, including those from immunoglobulins. Detailed mechanistic studies using transcriptomic, biochemical, structural and genetic techniques reveal the pathway employed by
Bacteroides thetaiotaomicron
(
Bt
) for CNG degradation. The breakdown process involves an extensive enzymatic apparatus encoded by multiple non-adjacent loci and comprises 19 different carbohydrate-active enzymes from different families, including a CNG-specific endo-glycosidase activity. Furthermore, CNG degradation involves the activity of carbohydrate-active enzymes that have previously been implicated in the degradation of other classes of glycan. This complex and diverse apparatus provides
Bt
with the capacity to access the myriad different structural variants of CNGs likely to be found in the intestinal niche.
The gut microbiota member
Bacteroides thetaiotaomicron
can utilize various complex
N
-glycans, including those from immunoglobulins, via a complex and diverse set of enzymes encoded by multiple non-adjacent loci.
Journal Article
Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition
by
Baslé, Arnaud
,
Coutinho, Pedro M.
,
Dourado, Catarina G.
in
Bacteria
,
Bacterial Proteins - chemistry
,
Bacterial Proteins - genetics
2016
The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBM families that targeted β-glucans, β-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize β-glucans and β-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.
Journal Article
Nuclear Magnetic Resonance metabolomics reveals an excretory metabolic signature of renal cell carcinoma
2016
RCC usually develops and progresses asymptomatically and, when detected, it is frequently at advanced stages and metastatic, entailing a dismal prognosis. Therefore, there is an obvious demand for new strategies enabling an earlier diagnosis. The importance of metabolic rearrangements for carcinogenesis unlocked a new approach for cancer research, catalyzing the increased use of metabolomics. The present study aimed the NMR metabolic profiling of RCC in urine samples from a cohort of RCC patients (
n
= 42) and controls (
n
= 49). The methodology entailed variable selection of the spectra in tandem with multivariate analysis and validation procedures. The retrieval of a disease signature was preceded by a systematic evaluation of the impacts of subject age, gender, BMI, and smoking habits. The impact of confounders on the urine metabolomics profile of this population is residual compared to that of RCC. A 32-metabolite/resonance signature descriptive of RCC was unveiled, successfully distinguishing RCC patients from controls in principal component analysis. This work demonstrates the value of a systematic metabolomics workflow for the identification of robust urinary metabolic biomarkers of RCC. Future studies should entail the validation of the 32-metabolite/resonance signature found for RCC in independent cohorts, as well as biological validation of the putative hypotheses advanced.
Journal Article
All that glitters is not gold: a stereological study of human donor oocytes
2023
Here we report a quantitative analysis of human metaphase II (MII) oocytes from a 22-year-old oocyte donor, retrieved after ovarian-controlled hyperstimulation. Five surplus donor oocytes were processed for transmission electron microscopy (TEM), and a stereological analysis was used to quantify the distribution of organelles, using the point-counting technique with an adequate stereological grid. Comparisons between means of the relative volumes (Vv) occupied by organelles in the three oocyte regions, cortex (C), subcortex (SC) and inner cytoplasm (IC), followed the Kruskal–Wallis test and Mann–Whitney U -test with Bonferroni correction. Life cell imaging and TEM analysis confirmed donor oocyte nuclear maturity. Results showed that the most abundant organelles were smooth endoplasmic reticulum (SER) elements (26.8%) and mitochondria (5.49%). Significant differences between oocyte regions were found for lysosomes ( P = 0.003), cortical vesicles ( P = 0.002) and large SER vesicles ( P = 0.009). These results were quantitatively compared with previous results using prophase I (GV) and metaphase I (MI) immature oocytes. In donor MII oocytes there was a normal presence of cortical vesicles, SER tubules, SER small, medium and large vesicles, lysosomes and mitochondria. However, donor MII oocytes displayed signs of cytoplasmic immaturity, namely the presence of dictyosomes, present in GV oocytes and rare in MI oocytes, of SER very large vesicles, characteristic of GV oocytes, and the rarity of SER tubular aggregates. Results therefore indicate that the criterion of nuclear maturity used for donor oocyte selection does not always correspond to cytoplasmic maturity, which can partially explain implantation failures with the use of donor oocytes.
Journal Article
Corrigendum: Complex pectin metabolism by gut bacteria reveals novel catalytic functions
2017
This corrects the article DOI: 10.1038/nature21725.
Journal Article