Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
33
result(s) for
"Luis Mier-y-Teran-Romero"
Sort by:
The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study
by
Hladish, Thomas J.
,
Cummings, Derek A. T.
,
Pearson, Carl A. B.
in
Biology and Life Sciences
,
Child
,
Clinical trials
2016
Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine.
The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively. The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines.
Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.
Journal Article
Novel modelling approaches to predict the role of antivirals in reducing influenza transmission
by
Clay, Matthew
,
Asher, Jason
,
Jolivet, Sebastien
in
Antiviral agents
,
Antiviral Agents - pharmacology
,
Antiviral Agents - therapeutic use
2023
To aid understanding of the effect of antiviral treatment on population-level influenza transmission, we used a novel pharmacokinetic–viral kinetic transmission model to test the correlation between nasal viral load and infectiousness, and to evaluate the impact that timing of treatment with the antivirals oseltamivir or baloxavir has on influenza transmission. The model was run under three candidate profiles whereby infectiousness was assumed to be proportional to viral titer on a natural-scale, log-scale, or dose–response model. Viral kinetic profiles in the presence and absence of antiviral treatment were compared for each individual (N = 1000 simulated individuals); subsequently, viral transmission mitigation was calculated. The predicted transmission mitigation was greater with earlier administration of antiviral treatment, and with baloxavir versus oseltamivir. When treatment was initiated 12–24 hours post symptom onset, the predicted transmission mitigation was 39.9–56.4% for baloxavir and 26.6–38.3% for oseltamivir depending on the infectiousness profile. When treatment was initiated 36–48 hours post symptom onset, the predicted transmission mitigation decreased to 0.8–28.3% for baloxavir and 0.8–19.9% for oseltamivir. Model estimates were compared with clinical data from the BLOCKSTONE post-exposure prophylaxis study, which indicated the log-scale model for infectiousness best fit the observed data and that baloxavir affords greater reductions in secondary case rates compared with neuraminidase inhibitors. These findings suggest a role for baloxavir and oseltamivir in reducing influenza transmission when treatment is initiated within 48 hours of symptom onset in the index patient.
Journal Article
Guillain–Barré syndrome risk among individuals infected with Zika virus: a multi-country assessment
by
Sejvar, James J.
,
Johansson, Michael A.
,
Mier-y-Teran-Romero, Luis
in
Biomedicine
,
Disease Outbreaks
,
Female
2018
Background
Countries with ongoing outbreaks of Zika virus have observed a notable rise in reported cases of Guillain–Barré syndrome (GBS), with mounting evidence of a causal link between Zika virus infection and the neurological syndrome. However, the risk of GBS following a Zika virus infection is not well characterized. In this work, we used data from 11 locations with publicly available data to estimate the risk of GBS following an infection with Zika virus, as well as the location-specific incidence of infection and the number of suspect GBS cases reported per infection.
Methods
We built a mathematical inference framework utilizing data from 11 locations that had reported suspect Zika and GBS cases, two with completed outbreaks prior to 2015 (French Polynesia and Yap) and nine others in the Americas covering partial outbreaks and where transmission was ongoing as of early 2017.
Results
We estimated that 2.0 (95% credible interval 0.5–4.5) reported GBS cases may occur per 10,000 Zika virus infections. The frequency of reported suspect Zika cases varied substantially and was highly uncertain, with a mean of 0.11 (95% credible interval 0.01–0.24) suspect cases reported per infection.
Conclusions
These estimates can help efforts to prepare for the GBS cases that may occur during Zika epidemics and highlight the need to better understand the relationship between infection and the reported incidence of clinical disease.
Journal Article
Impacts of Zika emergence in Latin America on endemic dengue transmission
by
Cinkovich, Stephanie C.
,
Cummings, Derek A. T.
,
Huang, Angkana T.
in
631/114
,
631/158/1469
,
631/326/596/1413
2019
In 2015 and 2016, Zika virus (ZIKV) swept through dengue virus (DENV) endemic areas of Latin America. These viruses are of the same family, share a vector and may interact competitively or synergistically through human immune responses. We examine dengue incidence from Brazil and Colombia before, during, and after the Zika epidemic. We find evidence that dengue incidence was atypically low in 2017 in both countries. We investigate whether subnational Zika incidence is associated with changes in dengue incidence and find mixed results. Using simulations with multiple assumptions of interactions between DENV and ZIKV, we find cross-protection suppresses incidence of dengue following Zika outbreaks and low periods of dengue incidence are followed by resurgence. Our simulations suggest correlations in DENV and ZIKV reproduction numbers could complicate associations between ZIKV incidence and post-ZIKV DENV incidence and that periods of low dengue incidence are followed by large increases in dengue incidence.
Dengue and Zika virus are related flaviviruses, and introduction of Zika in the Americas may have impacted dengue epidemiology. Here, Borchering et al. show that dengue incidence was unusually low in 2017 in Brazil and Colombia, and simulations incorporating immune-mediated interactions predict reductions in dengue following Zika outbreaks with subsequent rebounds.
Journal Article
Mosquitoes on a plane: Disinsection will not stop the spread of vector-borne pathogens, a simulation study
by
Tatem, Andrew J.
,
Johansson, Michael A.
,
Mier-y-Teran-Romero, Luis
in
Air transportation
,
Aircraft
,
Analysis
2017
Mosquito-borne diseases are increasingly being recognized as global threats, with increased air travel accelerating their occurrence in travelers and their spread to new locations. Since the early days of aviation, concern over the possible transportation of infected mosquitoes has led to recommendations to disinsect aircraft. Despite rare reports of mosquitoes, most likely transported on aircraft, infecting people far from endemics areas, it is unclear how important the role of incidentally transported mosquitoes is compared to the role of traveling humans. We used data for Plasmodium falciparum and dengue viruses to estimate the probability of introduction of these pathogens by mosquitoes and by humans via aircraft under ideal conditions. The probability of introduction of either pathogen by mosquitoes is low due to few mosquitoes being found on aircraft, low infection prevalence among mosquitoes, and high mortality. Even without disinsection, introduction via infected human travelers was far more likely than introduction by infected mosquitoes; more than 1000 times more likely for P. falciparum and more than 200 times more likely for dengue viruses. Even in the absence of disinsection and under the most favorable conditions, introduction of mosquito-borne pathogens via air travel is far more likely to occur as a result of an infected human travelling rather than the incidental transportation of infected mosquitoes. Thus, while disinsection may serve a role in preventing the spread of vector species and other invasive insects, it is unlikely to impact the spread of mosquito-borne pathogens.
Journal Article
Estimating incidence of infection from diverse data sources: Zika virus in Puerto Rico, 2016
by
Johansson, Michael A.
,
Greening, Bradford
,
Chung, Koo-Whang
in
Antibodies
,
Asymptomatic
,
Bayesian analysis
2021
Emerging epidemics are challenging to track. Only a subset of cases is recognized and reported, as seen with the Zika virus (ZIKV) epidemic where large proportions of infection were asymptomatic. However, multiple imperfect indicators of infection provide an opportunity to estimate the underlying incidence of infection. We developed a modeling approach that integrates a generic Time-series Susceptible-Infected-Recovered epidemic model with assumptions about reporting biases in a Bayesian framework and applied it to the 2016 Zika epidemic in Puerto Rico using three indicators: suspected arboviral cases, suspected Zika-associated Guillain-Barré Syndrome cases, and blood bank data. Using this combination of surveillance data, we estimated the peak of the epidemic occurred during the week of August 15, 2016 (the 33 rd week of year), and 120 to 140 (50% credible interval [CrI], 95% CrI: 97 to 170) weekly infections per 10,000 population occurred at the peak. By the end of 2016, we estimated that approximately 890,000 (95% CrI: 660,000 to 1,100,000) individuals were infected in 2016 (26%, 95% CrI: 19% to 33%, of the population infected). Utilizing multiple indicators offers the opportunity for real-time and retrospective situational awareness to support epidemic preparedness and response.
Journal Article
Intervention-Based Stochastic Disease Eradication
by
Mier-y-Teran-Romero, Luis
,
Lindley, Brandon
,
Schwartz, Ira B.
in
Applied mathematics
,
Biology
,
Disease control
2013
Disease control is of paramount importance in public health, with infectious disease extinction as the ultimate goal. Although diseases may go extinct due to random loss of effective contacts where the infection is transmitted to new susceptible individuals, the time to extinction in the absence of control may be prohibitively long. Intervention controls are typically defined on a deterministic schedule. In reality, however, such policies are administered as a random process, while still possessing a mean period. Here, we consider the effect of randomly distributed intervention as disease control on large finite populations. We show explicitly how intervention control, based on mean period and treatment fraction, modulates the average extinction times as a function of population size and rate of infection spread. In particular, our results show an exponential improvement in extinction times even though the controls are implemented using a random Poisson distribution. Finally, we discover those parameter regimes where random treatment yields an exponential improvement in extinction times over the application of strictly periodic intervention. The implication of our results is discussed in light of the availability of limited resources for control.
Journal Article
The Origins of Time-Delay in Template Biopolymerization Processes
by
Silber, Mary
,
Hatzimanikatis, Vassily
,
Mier-y-Terán-Romero, Luis
in
Agreements
,
Algorithms
,
Biochemistry/Theory and Simulation
2010
Time-delays are common in many physical and biological systems and they give rise to complex dynamic phenomena. The elementary processes involved in template biopolymerization, such as mRNA and protein synthesis, introduce significant time delays. However, there is not currently a systematic mapping between the individual mechanistic parameters and the time delays in these networks. We present here the development of mathematical, time-delay models for protein translation, based on PDE models, which in turn are derived through systematic approximations of first-principles mechanistic models. Theoretical analysis suggests that the key features that determine the time-delays and the agreement between the time-delay and the mechanistic models are ribosome density and distribution, i.e., the number of ribosomes on the mRNA chain relative to their maximum and their distribution along the mRNA chain. Based on analytical considerations and on computational studies, we show that the steady-state and dynamic responses of the time-delay models are in excellent agreement with the detailed mechanistic models, under physiological conditions that correspond to uniform ribosome distribution and for ribosome density up to 70%. The methodology presented here can be used for the development of reduced time-delay models of mRNA synthesis and large genetic networks. The good agreement between the time-delay and the mechanistic models will allow us to use the reduced model and advanced computational methods from nonlinear dynamics in order to perform studies that are not practical using the large-scale mechanistic models.
Journal Article
Challenges in the Interpretation of Dengue Vaccine Trial Results
by
Cummings, Derek A. T.
,
Burke, Donald S.
,
Mier-y-Teran-Romero, Luis
in
Clinical Trials as Topic
,
Data Interpretation, Statistical
,
Dengue
2013
The authors of the study propose potential explanations including an antigenic mismatch between the parental strain of the DENV-2 component and currently circulating DENV-2 viruses in Ratchaburi, an increased role for immunity to nonstructural proteins in DENV-2 that this vaccine does not induce, and a lack of correlation of measured neutralizing antibody and protective immunity [1]. Dashed white contours indicate levels of the ratio VEC2:VEI2. [...]the 0.5 contour divides the regions where VEC2 underestimates VEI2 by a factor greater (above) or lower (below) than 0.5.
Journal Article