Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
102 result(s) for "Luna, Rogelio"
Sort by:
α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking
Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8–14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.
Neuronal activation sequences in lateral prefrontal cortex encode visuospatial working memory during virtual navigation
Working memory (WM) is the ability to maintain and manipulate information ‘in mind’. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment. Here, we demonstrate distinct neuronal activation sequences (NASs) that encode remembered target locations in the virtual environment. This NAS code outperformed the persistent firing code for remembered locations during the virtual reality task, but not during a classical WM task using stationary stimuli and constraining eye movements. Finally, blocking NMDA receptors using low doses of ketamine deteriorated the NAS code and behavioral performance selectively during the WM task. These results reveal the versatility and adaptability of neural codes supporting working memory function in the primate lateral prefrontal cortex. The neural codes underlying working memory are not fully understood. Here the authors recorded neurons in the lateral prefrontal cortex of male macaque monkeys, during a working memory task, and identify activation sequences that encode target locations in the task.
Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making
The neuronal correlate of perceptual decision making has been extensively studied in the monkey somatosensory system by using a vibrotactile discrimination task, showing that stimulus encoding, retention, and comparison are widely distributed across cortical areas. However, from a network perspective, it is not known what role oscillations play in this task. We recorded local field potentials (LFPs) from diverse cortical areas of the sensorimotor system while one monkey performed the vibrotactile discrimination task. Exclusively during stimulus presentation, a periodic response reflecting the stimulus frequency was observed in the somatosensory regions, suggesting that after initial processing, the frequency content of the stimulus is coded in some other way than entrainment. Interestingly, we found that oscillatory activity in the beta band reflected the dynamics of decision making in the monkey sensorimotor network. During the comparison and decision period, beta activity showed a categorical response that reflected the decision of the monkey and distinguished correct from incorrect responses. Importantly, this differential activity was absent in a control condition that involved the same stimulation and response but no decision making required, suggesting it does not merely reflect the maintenance of a motor plan. We conclude that beta band oscillations reflect the temporal and spatial dynamics of the accumulation and processing of evidence in the sensorimotor network leading to the decision outcome.
Coding perceptual discrimination in the somatosensory thalamus
The sensory thalamus is classically viewed as a relay station of sensory information to cortex, but recent studies suggest that it is sensitive to cognitive demands. There are, however, few experiments designed to test whether this is so. We addressed this problem by analyzing the responses of single neurons recorded in the somatosensory thalamus while trained monkeys reported a decision based on the comparison of two mechanical vibration frequencies applied sequentially to one fingertip. In this task, monkeys must hold the first stimulus frequency (f1) in working memory and compare it to the current sensory stimulus (f2) and must postpone the decision report until a cue triggers the decision motor report, i.e., whether f2 > f1 or f2 < f1. We found that thalamic somatosensory neurons encoded the stimulus frequency either in their periodicity and firing-rate responses, but only during the stimulus periods and not during the working memory and decision components of this task. Furthermore, correlation analysis between behavior and stimulus coding showed that only the firing rate modulations accounted for the overall psychophysical performance. However, these responses did not predict the animal’s decision reports on individual trials. Moreover, the sensitivity to changes in stimulus frequency was similar when the monkeys performed the vibrotactile discrimination task and when they were not required to report discrimination. These results suggest that the somatosensory thalamus behaves as a relay station of sensory information to the cortex and that it is insensitive to the cognitive demands of the task used here.
Task-driven intra- and interarea communications in primate cerebral cortex
Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas. Significance How do multiple neurons communicate to solve a cognitive task? To answer this question, we investigate spike-train directional correlations across five primate cortical areas simultaneously recorded during a somatosensory discrimination task. Correlations are inferred using a nonparametric procedure that models spike trains as Markovian binary series and dynamically estimates the directed information between every neuron pair at different delays. We find that information processing during the discrimination task can be described by intra- and interarea decision-driven delayed correlations, which are no longer found when a monkey receives both stimuli but does not perform the task.
Neural correlates of a postponed decision report
Depending on environmental demands, a decision based on a sensory evaluation may be either immediately reported or postponed for later report. If postponed, the decision must be held in memory. But what exactly is stored by the underlying memory circuits, the final decision itself or the sensory information that led to it? Here, we report that, during a postponed decision report period, the activity of medial premotor cortex neurons encodes both the result of the sensory evaluation that corresponds to the monkey's possible choices and past sensory information on which the decision is based. These responses could switch back and forth with remarkable flexibility across the postponed decision report period. Moreover, these responses covaried with the animal's decision report. We propose that maintaining in working memory the original stimulus information on which the decision is based could serve to continuously update the postponed decision report in this task.
Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?
Amyloid beta (Aβ) is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD). For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.
Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination
We report a procedure for recording the simultaneous activity of single neurons distributed across five cortical areas in behaving monkeys. The procedure consists of a commercially available microdrive adapted to a commercially available neural data collection system. The critical advantage of this procedure is that, in each cortical area, a configuration of seven microelectrodes spaced 250-500 μm can be inserted transdurally and each can be moved independently in the z axis. For each microelectrode, the data collection system can record the activity of up to five neurons together with the local field potential (LFP). With this procedure, we normally monitor the simultaneous activity of 70-100 neurons while trained monkeys discriminate the difference in frequency between two vibrotactile stimuli. Approximately 20-60 of these neurons have response properties previously reported in this task. The neuronal recordings show good signal-to-noise ratio, are remarkably stable along a 1-day session, and allow testing several protocols. Microelectrodes are removed from the brain after a 1-day recording session, but are reinserted again the next day by using the same or different x-y microelectrode array configurations. The fact that microelectrodes can be moved in the z axis during the recording session and that the x-y configuration can be changed from day to day maximizes the probability of studying simultaneous interactions, both local and across distant cortical areas, between neurons associated with the different components of this task.
Ketamine disrupts naturalistic coding of working memory in primate lateral prefrontal cortex networks
Ketamine is a dissociative anesthetic drug, which has more recently emerged as a rapid-acting antidepressant. When acutely administered at subanesthetic doses, ketamine causes cognitive deficits like those observed in patients with schizophrenia, including impaired working memory. Although these effects have been linked to ketamine’s action as an N-methyl-D-aspartate receptor antagonist, it is unclear how synaptic alterations translate into changes in brain microcircuit function that ultimately influence cognition. Here, we administered ketamine to rhesus monkeys during a spatial working memory task set in a naturalistic virtual environment. Ketamine induced transient working memory deficits while sparing perceptual and motor skills. Working memory deficits were accompanied by decreased responses of fast spiking inhibitory interneurons and increased responses of broad spiking excitatory neurons in the lateral prefrontal cortex. This translated into a decrease in neuronal tuning and information encoded by neuronal populations about remembered locations. Our results demonstrate that ketamine differentially affects neuronal types in the neocortex; thus, it perturbs the excitation inhibition balance within prefrontal microcircuits and ultimately leads to selective working memory deficits.
Neural codes for perceptual discrimination in primary somatosensory cortex
We sought to determine the neural code(s) for frequency discrimination of vibrotactile stimuli. We tested five possible candidate codes by analyzing the responses of single neurons recorded in primary somatosensory cortex of trained monkeys while they discriminated between two consecutive vibrotactile stimuli. Differences in the frequency of two stimuli could be discriminated using information from (i) time intervals between spikes, (ii) average spiking rate during each stimulus, (iii) absolute number of spikes elicited by each stimulus, (iv) average rate of bursts of spikes or (v) absolute number of spike bursts elicited by each stimulus. However, only a spike count code, in which spikes are integrated over a time window that has most of its mass in the first 250 ms of each stimulus period, covaried with behavior on a trial-by-trial basis, was consistent with psychophysical biases induced by manipulation of stimulus duration, and produced neurometric discrimination thresholds similar to behavioral psychophysical thresholds.