Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Lundblad, Martin"
Sort by:
Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons
We used in vivo amperometry to monitor changes in synaptic dopamine (DA) release in the striatum induced by overexpression of human wild-type α-synuclein in nigral DA neurons, induced by injection of an adeno-associated virus type 6 (AAV6)-α-synuclein vector unilaterally into the substantia nigra in adult rats. Impairments in DA release evolved in parallel with the development of degenerative changes in the nigrostriatal axons and terminals. The earliest change, seen 10 d after vector injection, was a marked, ≈50%, reduction in DA reuptake, consistent with an early dysfunction of the DA transporter that developed before any overt signs of axonal damage. At 3 wk, when the first signs of axonal damage were observed, the amount of DA released after a KCI pulse was reduced by 70-80%, and peak DA concentration was delayed, indicating an impaired release mechanism. At later time points, 8-16 wk, overall striatal innervation density was reduced by 60-80% and accompanied by abundant signs of axonal damage in the form of α-synuclein aggregates, axonal swellings, and dystrophic axonal profiles. At this stage DA release and reuptake were profoundly reduced, by 80-90%. The early changes in synaptic DA release induced by overexpression of human α-synuclein support the idea that early predegenerative changes in the handling of DA may initiate, and drive, a progressive degenerative process that hits the axons and terminals first. Synaptic dysfunction and axonopathy would thus be the hallmark of presymptomatic and earlystage Parkinson disease, followed by neuronal degeneration and cell loss, characteristic of more advanced stages of the disease.
VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation
The \"One neuron-one neurotransmitter\" concept has been challenged frequently during the last three decades, and the coexistence of neurotransmitters in individual neurons is now regarded as a common phenomenon. The functional significance of neurotransmitter coexistence is, however, less well understood. Several studies have shown that a subpopulation of dopamine (DA) neurons in the ventral tegmental area (VTA) expresses the vesicular glutamate transporter 2 (VGLUT2) and has been suggested to use glutamate as a cotransmitter. The VTA dopamine neurons project to limbic structures including the nucleus accumbens, and are involved in mediating the motivational and locomotor activating effects of psychostimulants. To determine the functional role of glutamate cotransmission by these neurons, we deleted VGLUT2 in DA neurons by using a conditional gene-targeting approach in mice. A DAT-Cre/Vglut2Lox mouse line (Vglut2f/f;DAT⁻Cre mice) was produced and analyzed by in vivo amperometry as well as by several behavioral paradigms. Although basal motor function was normal in the Vglut2f/f;DAT⁻Cre mice, their risk-taking behavior was altered. Interestingly, in both home-cage and novel environments, the gene targeted mice showed a greatly blunted locomotor response to the psychostimulant amphetamine, which acts via the midbrain DA system. Our results show that VGLUT2 expression in DA neurons is required for normal emotional reactivity as well as for psychostimulant-mediated behavioral activation.
Striatal Glutamate Release in l-DOPA-Induced Dyskinetic Animals
L-DOPA-induced dyskinesia is a common side effect developed after chronic treatment with 3,4-dihydroxyphenyl-l-alanine (l-DOPA) in Parkinson's disease. The biological mechanisms behind this side effect are not fully comprehended although involvement of dopaminergic, serotonergic, and glutamatergic systems has been suggested. The present study utilizes in vivo amperometry to investigate the impact from unilateral 6-hydroxydopamine lesions and l-DOPA (4 mg/kg, including benserazide 15 mg/kg) -induced dyskinetic behavior on striatal basal extracellular glutamate concentration and potassium-evoked glutamate release in urethane-anesthetized rats. Recordings were performed before and after local L-DOPA application in the striatum. In addition, effects from the 5-HT(1A) receptor agonist (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OHDPAT; 1 mg/kg) was assessed on glutamate release and on dyskinetic behavior. The results revealed a bilateral ≈ 30% reduction of basal extracellular glutamate concentration and attenuated potassium-evoked glutamate release after a unilateral dopamine-depletion in L-DOPA naïve animals. In dyskinetic subjects, basal glutamate concentration was comparable to normal controls, although potassium-evoked glutamate release was reduced to similar levels as in drug naïve dopamine-lesioned animals. Furthermore, acute striatal L-DOPA administration attenuated glutamate release in all groups, except in the dopamine-lesioned striatum of dyskinetic animals. Co-administration of 8-OHDPAT and L-DOPA decreased dyskinesia in dopamine-lesioned animals, but did not affect potassium-evoked glutamate release, which was seen in normal animals. These findings indicate altered glutamate transmission upon dopamine-depletion and dyskinesia.
TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity
SignificanceThis study shows that neurodegenerative changes induced by α-synuclein in midbrain dopamine neurons in vivo can be blocked through activation of the autophagy-lysosome pathway. Using an adeno-associated virus model of Parkinson disease to overexpress α-synuclein in the substantia nigra, we show that genetic [transcription factor EB (TFEB) and Beclin-1 overexpression] or pharmacological (rapalog) manipulations that enhance autophagy protect nigral neurons from α-synuclein toxicity, but inhibiting autophagy exacerbates α-synuclein toxicity. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function, and identify TFEB as a target for therapies aimed at neuroprotection and disease modification in Parkinson disease. The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator of the autophagy-lysosome pathway. The changes in lysosomal function, observed in the rat model as well as in human PD midbrain, were reversed by overexpression of TFEB, which afforded robust neuroprotection via the clearance of α-synuclein oligomers, and were aggravated by microRNA-128–mediated repression of TFEB in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function, and highlight TFEB as a key player in the induction of α-synuclein–induced toxicity and PD pathogenesis, thus identifying TFEB as a promising target for therapies aimed at neuroprotection and disease modification in PD.
Tonic and Phasic Amperometric Monitoring of Dopamine Using Microelectrode Arrays in Rat Striatum
Here we report a novel microelectrode array recording approach to measure tonic (resting) and phasic release of dopamine (DA) in DA-rich areas such as the rat striatum and nucleus accumbens. The resulting method is tested in intact central nervous system (CNS) and in animals with extensive loss of the DA pathway using the neurotoxin, 6-hydroxyDA (6-OHDA). The self-referencing amperometric recording method employs Nafion-coated with and without m-phenylenediamine recording sites that through real-time subtraction allow for simultaneous measures of tonic DA levels and transient changes due to depolarization and amphetamine-induced release. The recording method achieves low-level measures of both tonic and phasic DA with decreased recording drift allowing for enhanced sensitivity normally not achieved with electrochemical sensors in vivo.
Modeling Parkinson’s disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain
Although a causative role of α-synuclein (α-syn) is well established in Parkinson’s disease pathogenesis, available animal models of synucleinopathy do not replicate the full range of cellular and behavioral changes characteristic of the human disease. This study was designed to generate a more faithful model of Parkinson’s disease by injecting human α-syn fibril seeds into the rat substantia nigra (SN), in combination with adenoassociated virus (AAV)-mediated overexpression of human α-syn, at levels that, by themselves, are unable to induce acute dopamine (DA) neurodegeneration. We show that the ability of human α-syn fibrils to trigger Lewy-like α-synuclein pathology in the affected DA neurons is dramatically enhanced in the presence of elevated levels of human α-syn. This synucleinopathy was fully developed already 10 days after fibril injection, accompanied by progressive degeneration of dopaminergic neurons in SN, neuritic swelling, reduced striatal DA release, and impaired motor behavior. Moreover, a prominent inflammatory response involving both activation of resident microglia and infiltration of CD4⁺ and CD8⁺ T lymphocytes was observed. Hypertrophic microglia were found to enclose or engulf cells and processes containing Lewy-like α-syn aggregates. α-Syn aggregates were also observed inside these cells, suggesting transfer of phosphorylated α-syn from the affected nigral neurons. The nigral pathology triggered by fibrils in combination with AAV-mediated overexpression of α-syn reproduced many of the cardinal features of the human disease. The short time span and the distinct sequence of pathological and degenerative changes make this combined approach attractive as an experimental model for the assessment of neuroprotective and disease-modifying strategies.
Highly efficient generation of induced neurons from human fibroblasts that survive transplantation into the adult rat brain
Induced neurons (iNs) offer a novel source of human neurons that can be explored for applications of disease modelling, diagnostics, drug screening and cell replacement therapy. Here we present a protocol for highly efficient generation of functional iNs from fetal human fibroblasts and also demonstrate the ability of these converted human iNs (hiNs) to survive transplantation and maintain their phenotype in the adult rat brain. The protocol encompasses a delay in transgene activation after viral transduction that resulted in a significant increase in conversion efficiency. Combining this approach with treatment of small molecules that inhibit SMAD signalling and activate WNT signalling provides a further increase in the conversion efficiency and neuronal purity, resulting in a protocol that provides a highly efficient method for the generation of large numbers of functional and transplantable iNs from human fibroblasts without the use of a selection step. When transplanting the converted neurons from different stages of in vitro culture into the brain of adult rats, we observed robust survival and maintenance of neuronal identity four weeks post-transplantation. Interestingly, the positive effect of small molecule treatment observed in vitro did not result in a higher yield of iNs surviving transplantation.
Modeling Parkinson's disease pathology by combination of fibril seeds and a-synuclein overexpression in the rat brain
Although a causative role of α-synuclein (α-syn) is well established in Parkinson's disease pathogenesis, available animal models of synucleinopathy do not replicate the full range of cellular and behavioral changes characteristic of the human disease. This study was designed to generate a more faithful model of Parkinson's disease by injecting human α-syn fibril seeds into the rat substantia nigra (SN), in combination with adenoassociated virus (AAV)-mediated overexpression of human α-syn, at levels that, by themselves, are unable to induce acute dopamine (DA) neurodegeneration. We show that the ability of human α-syn fibrils to trigger Lewy-like α-synuclein pathology in the affected DA neurons is dramatically enhanced in the presence of elevated levels of human α-syn. This synucleinopathy was fully developed already 10 days after fibril injection, accompanied by progressive degeneration of dopaminergic neurons in SN, neuritic swelling, reduced striatal DA release, and impaired motor behavior. Moreover, a prominent inflammatory response involving both activation of resident microglia and infiltration of CD4+ and CD8+ T lymphocytes was observed. Hypertrophic microglia were found to enclose or engulf cells and processes containing Lewy-like α-syn aggregates. α-Syn aggregates were also observed inside these cells, suggesting transfer of phosphorylated α-syn from the affected nigral neurons. The nigral pathology triggered by fibrils in combination with AAV-mediated overexpression of α-syn reproduced many of the cardinal features of the human disease. The short time span and the distinct sequence of pathological and degenerative changes make this combined approach attractive as an experimental model for the assessment of neuroprotective and disease-modifying strategies.
Impaired neurotransmission caused by overexpression of alpha-synuclein in nigral dopamine neurons
We used in vivo amperometry to monitor changes in synaptic dopamine (DA) release in the striatum induced by overexpression of human wild-type α-synuclein in nigral DA neurons, induced by injection of an adeno-associated virus type 6 (AAV6)-α-synuclein vector unilaterally into the substantia nigra in adult rats. Impairments in DA release evolved in parallel with the development of degenerative changes in the nigrostriatal axons and terminals. The earliest change, seen 10 d after vector injection, was a marked, ...50%, reduction in DA reuptake, consistent with an early dysfunction of the DA transporter that developed before any overt signs of axonal damage. At 3 wk, when the first signs of axonal damage were observed, the amount of DA released after a KCl pulse was reduced by 70-80%, and peak DA concentration was delayed, indicating an impaired release mechanism. At later time points, 8-16 wk, overall striatal innervation density was reduced by 60-80% and accompanied by abundant signs of axonal damage in the form of α-synuclein aggregates, axonal swellings, and dystrophic axonal profiles. At this stage DA release and reuptake were profoundly reduced, by 80-90%. The early changes in synaptic DA release induced by overexpression of human α-synuclein support the idea that early predegenerative changes in the handling of DA may initiate, and drive, a progressive degenerative process that hits the axons and terminals first. Synaptic dysfunction and axonopathy would thus be the hallmark of presymptomatic and early-stage Parkinson disease, followed by neuronal degeneration and cell loss, characteristic of more advanced stages of the disease. (ProQuest: ... denotes formulae/symbols omitted.)