Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,380 result(s) for "Luo, Ning"
Sort by:
China can be self-sufficient in maize production by 2030 with optimal crop management
Population growth and economic development in China has increased the demand for food and animal feed, raising questions regarding China’s future maize production self-sufficiency. Here, we address this challenge by combining data-driven projections with a machine learning method on data from 402 stations, with data from 87 field experiments across China. Current maize yield would be roughly doubled with the implementation of optimal planting density and management. In the 2030 s, we estimate a 52% yield improvement through dense planting and soil improvement under a high-end climate forcing Shared Socio-Economic Pathway (SSP585), compared with a historical climate trend. Based on our results, yield gains from soil improvement outweigh the adverse effects of climate change. This implies that China can be self-sufficient in maize by using current cropping areas. Our results challenge the view of yield stagnation in most global areas and provide an example of how food security can be achieved with optimal crop-soil management under future climate change scenarios. Population growth in China has increased the demand for food. Combining data-driven projections with field experiments, Luo et al. find that China can achieve self-sufficiency in maize production by 2030 implementation of optimal planting density and management without expanding cropping areas.
Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells
Background Berberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins. Cisplatin (DDP) is known as an effective chemotherapeutic agent against cancer by inducing DNA damage and cell apoptosis. However, the effect of the combined used of BBR and DDP on cell necroptosis in ovarian cancer has not been reported. Methods OVCAR3 and three patient-derived primary ovarian cancer cell lines (POCCLs) were chosen as the experimental objects. To determine the potential anti-cancer activity of BBR and DDP in combination, we firstly treated OVCAR3 and POCCLs cells with BBR and/or DDP. The cell viability of OVCAR3 and POCCLs with treatment of BBR or DDP for different hours was measured by CCK-8 assay. Flow cytometry was used to analyze cell cycle distribution and changes in apoptotic cells after treatment with BBR and/or DDP. The morphological changes of OVCAR3 cells were observed by using Transmission electron microscopy (TEM) analysis. Proliferation, apoptosis and necroptosis related markers of OVCAR3 and POCCLs with treatment of BBR or DDP were measured by RT-qPCR, western blotting and immunofluorescence assay. Results Our results demonstrated that BBR significantly inhibited the proliferation of OVCAR3 and primary ovarian cancer cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP had a prominent inhibitory effect on cancer cell growth and induced G0/G1 cell cycle arrest. TEM revealed that the majority of cells after BBR or DDP treatment had an increasing tendency of typical apoptotic and necrotic cell death morphology. Besides, BBR and DDP inhibited the expression of PCNA and Ki67 and enhanced the expression and activation of Caspase-3, Caspase-8, RIPK3 and MLKL. Conclusion This study proposed that the combination therapy of BBR and DDP markedly enhanced more ovarian cancer cell death by inducing apoptosis and necroptosis, which may improve the anticancer effect of chemotherapy drugs. The apoptosis involved the caspase-dependent pathway, while the necroptosis involved the activation of the RIPK3–MLKL pathway. We hope our findings might provide a new insight for the potential of BBR as a therapeutic agent in the treatment of ovarian cancer.
Elastic modulus evolution of rocks under heating–cooling cycles
Rocks decay significantly during or after heating–cooling cycles, which can in turn lead to hazards such as landslide and stone building collapse. Nevertheless, the deterioration mechanisms are unclear. This paper presents a simple and reliable method to explore the mechanical property evolutions of representative sandstones during heating–cooling cycles. It was found that rock decay takes place in both heating and cooling processes, and dramatic modulus changes occurred near the α  −  β phase transition temperature of quartz. Our analysis also revealed that the rock decay is mainly attributed to the internal cracking. The underlying mechanism is the heterogeneous thermal deformation of mineral grains and the α  –  β phase transition of quartz.
Contactless Credit Cards Payment Fraud Protection by Ambient Authentication
In recent years, improvements to the computational ability of mobile phones and support for near-field-communication have enabled transactions to be performed by using mobile phones to emulate a credit card or by using quick response codes. Thus, users need not carry credit cards but can simply use their mobile phones. However, the Europay MasterCard Visa (EMV) protocol is associated with a number of security concerns. In contactless transactions, attackers can make purchases by launching a relay attack from a distance. To protect message transmission and prevent relay attacks, we propose a transaction protocol that is compatible with EMV protocols and that can perform mutual authentication and ambient authentication on near-field-communication-enabled mobile phones. Through mutual authentication, our protocol ensures the legitimacy of transactions and establishes keys for a transaction to protect the subsequent messages, thereby avoiding security problems in EMV protocols, such as man-in-the-middle attacks, skimming, and clone attacks on credit cards. By using ambient factors, our protocol verifies whether both transacting parties are located in the same environment, and it prevents relay attacks in the transaction process.
Integrating bulk and single-cell RNA sequencing reveals SH3D21 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway
As a novel genetic biomarker, the potential role of SH3D21 in hepatocellular carcinoma remains unclear. Here, we decipher the expression and function of SH3D21 in human hepatocellular carcinoma. The expression level and clinical significance of SH3D21 in hepatocellular carcinoma patients, the relationship between SH3D21 and the features of tumor microenvironment (TME) and role of SH3D21 in promoting hepatocellular carcinoma progression were analyzed based on the bulk samples obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Single-cell sequencing samples from Gene Expression Omnibus (GEO) database were employed to verify the prediction mechanism. Additionally, different biological effects of SH3D21 on hepatocellular carcinoma cells were investigated by qRT-PCR, CCK-8 assay, colony forming assay and Western blot analysis. Bioinformatics analysis and in vitro experiments revealed that the expression level of SH3D21 was up-regulated in hepatocellular carcinoma and correlated with the poor prognosis in hepatocellular carcinoma patients. SH3D21 effectively promoted the proliferation, invasion, and migration as well as the formation of immunosuppressive microenvironment of hepatocellular carcinoma. In addition, SH3D21 can activate the PI3K/AKT/mTOR signaling pathway. SH3D21 stimulates the progression of hepatocellular carcinoma by activating the PI3K/AKT/mTOR signaling pathway, and SH3D21 can serve as a prognostic biomarker and therapeutic target for hepatocellular carcinoma.
Nonlinear dynamic modeling and vibration analysis for early fault evolution of rolling bearings
In rotating machinery, the condition of rolling bearings is paramount, directly influencing operational integrity. However, the literature on the fault evolution of rolling bearings in their nascent stages is notably limited. Addressing this gap, our study establishes an innovative nonlinear dynamic model for early fault evolution of rolling bearings based on collision impact. Firstly, considering the fault evolution characteristics, the influence of the rolling element and fault structure, the dynamic model of early fault evolution between the rolling element and the local fault is established. Secondly, according to the Hertzian contact deformation theory, a nonlinear dynamic model of rolling bearings expressed as mass-spring is established. Thirdly, the energy contribution method is used to integrate the fault evolution model and the nonlinear dynamic model of the rolling bearing. A nonlinear dynamic model of early fault evolution of the rolling bearing is proposed by using the Lagrangian equation. Comparing the simulation results of the nonlinear dynamic with the experimental results, it can be seen that the numerical model can effectively predict the evolution process and vibration characteristics of the fault evolution of rolling bearings in the early stage.
Quantitative Study on MFL Signal of Pipeline Composite Defect Based on Improved Magnetic Charge Model
Pipeline magnetic flux leakage (MFL) internal detection technology is the most widely used and effective method in the field of long-distance oil and gas pipeline online detection. With the improvement of data quantization precision, the influence of stress on MFL signal has been paid more and more attention. In this paper, the relationship between stress and saturation magnetization is introduced based on J-A theory. The analytical model of MFL detection signal for pipeline composite defects is established. The MFL signal characteristics of composite defects are quantitatively calculated. The effect of stress on MFL signal is studied. The theoretical analysis is verified by experimental data and excavation results. The researches show that the saturation magnetization of ferromagnets decreases exponentially with the increase of stress in strong magnetic field. The MFL signal of composite defect is weaker than that of volumetric defects of the same dimension. The axial amplitude and radial peak-to-peak value of MFL signal decrease with the increase of stress around the defect. The axial amplitude and radial peak-to-peak value of MFL signal increase non-linearly with the increase of width and depth of defects. When using MFL signal to judge the defect depth, it is necessary to make clear whether there is stress concentration phenomenon around the defect because the stress will lead to underestimation of the defect depth.
A CAN-Bus Lightweight Authentication Scheme
The design of the Controller Area Network (CAN bus) did not account for security issues and, consequently, attacks often use external mobile communication interfaces to conduct eavesdropping, replay, spoofing, and denial-of-service attacks on a CAN bus, posing a risk to driving safety. Numerous studies have proposed CAN bus safety improvement techniques that emphasize modifying the original CAN bus method of transmitting frames. These changes place additional computational burdens on electronic control units cause the CAN bus to lose the delay guarantee feature. Consequently, we proposed a method that solves these compatibility and security issues. Simple and efficient frame authentication algorithms were used to prevent spoofing and replay attacks. This method is compatible with both CAN bus and CAN-FD protocols and has a lower operand when compared with other methods.
A Secure Partial RFID Ownership Transfer Protocol with Multi-Owners
Mobile radio frequency identification (RFID) has been extensively applied in a wide range of fields. In supply chain management, RFID is used to more efficiently manage the ownership transfer of cargo. The transfer of a group of tags belonging to multiple owners is often required at the front end of a supply chain. This study, therefore, proposes a secure, high-performance threshold multi-owner partial tag ownership transfer protocol that supports a mobile RFID environment and features the capabilities and security required for supporting existing ownership transfer environments (e.g., application for different authorities, designation of the transfer target, and ownership transfer of a group of tags). Moreover, the proposed protocol can resist against most of the known attacks on RFID.
A customized image editing framework for diverse prohibited and restricted products in illegal online transactions
The circulation of prohibited and restricted goods in online transactions seriously violates consumer rights and threatens public safety. However, the lack of a dataset for prohibited and restricted goods makes it difficult to regulate such illegal online transactions. Therefore, a multimodal dataset for prohibited and restricted goods is proposed, including 38,513 images and 77,026 texts. Nevertheless, because of the diversity and potential adversarial modifications of prohibited and restricted goods, intelligent recognition of such items still faces significant challenges. Thus, an image editing framework for prohibited and restricted goods in online transactions is proposed. This framework integrates three novel components: (1) a PR-adapter that optimizes image prompts through image augmentation and compression representation techniques; (2) a text description generator combining the CLIP model and a multimodal large language model (MobileVLM) to generate more precise textual descriptions of images; and (3) an image generator, including a new loss function designed to fine-tune the stable diffusion model, enabling a better understanding of text semantics and generating images that more closely align with the textual descriptions. Experimental results show that this framework can generate diverse and accurate images of prohibited and restricted goods, effectively enhancing the development of intelligent supervision for online transactions.