Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
137 result(s) for "Luo, Yonghua"
Sort by:
The relationship between parental support for exercise and depression: The mediating effects of physical exercise and physical self-esteem
The mental health challenges among Chinese college students have become a pressing social concern. This study examined the relationship between parental support for exercise and depression among freshmen and also explored the mediating role of physical exercise and physical self-esteem. Utilizing the Parental Exercise Support Scale, Depression Self-Rating Scale, Physical Activity Rating Scale, and Physical Self-Esteem Scale, a questionnaire survey was conducted. Convenient samples from two universities were recruited by university teachers, which included 766 university freshmen. Correlation and linear regression analyses were employed to assess the overall associations while bootstrapping method was used to test mediation effects. Results indicated significant correlations between parental support for exercise and physical exercise, physical self-esteem, and depression. Physical exercise and physical self-esteem were found to mediate the relationship between parental support for exercise and depression, both individually and sequentially. These findings highlight the potential association between parental support for exercise and the mental health of college freshmen and also offer a mechanism to understand this association.
Construction of a ferroptosis scoring system and identification of LINC01572 as a novel ferroptosis suppressor in lung adenocarcinoma
Background: Ferroptosis is a novel process of programmed cell death driven by excessive lipid peroxidation that is associated with the development of lung adenocarcinoma. N6-methyladenosine (m6a) modification of multiple genes is involved in regulating the ferroptosis process, while the predictive value of N6-methyladenosine- and ferroptosis-associated lncRNA (FMRlncRNA) in the prognosis of patients remains with LUAD remains unknown. Methods: Unsupervised cluster algorithm was applied to generate subcluster in LUAD according to ferroptosis-associated lncRNA. Stepwise Cox analysis and LASSO algorithm were applied to develop a prognostic model. Cellular location was detected by single-cell analysis. Also, we conducted Gene set enrichment analysis (GSEA) enrichment, immune microenvironment and drug sensitivity analysis. In addition, the expression and function of the LINC01572 were investigated by several in vitro experiments including qRT-PCR, cell viability assays and ferroptosis assays. Results: A novel ferroptosis-associated lncRNAs-based molecular subtype containing two subclusters were determined in LUAD. Then, we successfully created a risk model according to five ferroptosis-associated lncRNAs (LINC00472, MBNL1-AS1, LINC01572, ZFPM2-AS1, and TMPO-AS1). Our nominated model had good stability and predictive function. The expression patterns of five ferroptosis-associated lncRNAs were confirmed by polymerase chain reaction (PCR) in LUAD cell lines. Knockdown of LINC01572 significantly inhibited cell viability and induced ferroptosis in LUAD cell lines. Conclusion: Our data provided a risk score system based on ferroptosis-associated lncRNAs with prognostic value in LUAD. Moreover, LINC01572 may serve as a novel ferroptosis suppressor in LUAD.
Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study
Background: Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population. Methods: To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005–2016) were used. In the final analysis, a total of 8138 adults aged 20 years and older were included. To investigate the potential relationship between BFRs and outcomes, we used binary logistic regression, restricted cubic spline (RCS), quantile-based g computation (QGC), and weighted quantile sum (WQS) regression. Results: The findings showed that serum BFR concentrations were associated with depressive symptoms over a broad spectrum. Binary logistic regression and RCS analysis showed that certain BFRs, particularly PBB153, were significantly and positively associated with the incidence of depression, even after adjustment for various confounders (p < 0.05). Mixed exposure to BFRs was also found to be associated with depression in the population, with a stronger association in men. The two most influential BFRs, PBB153 and PBDE85, were identified in both mixed exposure models and are potential risk factors of concern. Conclusion: Our study identified new insights into the relationship between BFRs and depression, but sizable population-based cohort studies and toxicology mechanism studies will be needed to establish causality.
Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity
Doc number: 20 Abstract Background: Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results: In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera ) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion: The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.
Special transcriptome landscape and molecular prognostic signature of non-smoking head and neck cancer patients
As a well-known behavioral risk factor for human health, smoking is involved in carcinogenesis, tumor progression, and therapeutic interventions of head and neck squamous cell carcinoma (HNSCC). The stratification of disease subtypes according to tobacco use is expressively needed for HNSCC precision therapy. High-throughput transcriptome profiling by RNA sequencing (RNA-seq) from The Cancer Genome Atlas (TCGA) was collected and collated for differential expression analysis and pathway enrichment analysis to characterize the molecular landscape for non-smoking HNSCC patients. Molecular prognostic signatures specific to non-smoking HNSCC patients were identified by the least absolute shrinkage and selection operator (LASSO) analysis and were then verified via internal and external validation cohorts. While proceeding to immune cell infiltration and after drug sensitivity analysis was further carried out, a proprietary nomogram was finally developed for their respective clinical applications. In what it relates to the non-smoking cohort, the enrichment analysis pointed to human papillomavirus (HPV) infection and PI3K-Akt signaling pathway, with the prognostic signature consisting of another ten prognostic genes (COL22A1, ADIPOQ, RAG1, GREM1, APBA2, SPINK9, SPP1, ARMC4, C6, and F2RL2). These signatures showed to be independent factors, and the related nomograms were, thus, constructed for their further and respective clinical applications. While the molecular landscapes and proprietary prognostic signature were characterized based on non-smoking HNSCC patients, a clinical nomogram was constructed to provide better HNSCC patient classification and guide treatment for non-smoking HNSCC patients. Nonetheless, there are still significant challenges in the recognition, diagnosis, treatment, and understanding of the potentially efficient mechanisms of HNSCC with no tobacco use.
RETRACTED ARTICLE: Special transcriptome landscape and molecular prognostic signature of non-smoking head and neck cancer patients
As a well-known behavioral risk factor for human health, smoking is involved in carcinogenesis, tumor progression, and therapeutic interventions of head and neck squamous cell carcinoma (HNSCC). The stratification of disease subtypes according to tobacco use is expressively needed for HNSCC precision therapy. High-throughput transcriptome profiling by RNA sequencing (RNA-seq) from The Cancer Genome Atlas (TCGA) was collected and collated for differential expression analysis and pathway enrichment analysis to characterize the molecular landscape for non-smoking HNSCC patients. Molecular prognostic signatures specific to non-smoking HNSCC patients were identified by the least absolute shrinkage and selection operator (LASSO) analysis and were then verified via internal and external validation cohorts. While proceeding to immune cell infiltration and after drug sensitivity analysis was further carried out, a proprietary nomogram was finally developed for their respective clinical applications. In what it relates to the non-smoking cohort, the enrichment analysis pointed to human papillomavirus (HPV) infection and PI3K-Akt signaling pathway, with the prognostic signature consisting of another ten prognostic genes (COL22A1, ADIPOQ, RAG1, GREM1, APBA2, SPINK9, SPP1, ARMC4, C6, and F2RL2). These signatures showed to be independent factors, and the related nomograms were, thus, constructed for their further and respective clinical applications. While the molecular landscapes and proprietary prognostic signature were characterized based on non-smoking HNSCC patients, a clinical nomogram was constructed to provide better HNSCC patient classification and guide treatment for non-smoking HNSCC patients. Nonetheless, there are still significant challenges in the recognition, diagnosis, treatment, and understanding of the potentially efficient mechanisms of HNSCC with no tobacco use.
Study on the Synchronous Propulsion of New Urbanization and Ecological Civilization Construction
The construction of ecological civilization is the inevitable choice for implementing of the new urbanization strategy and is the objective requirement of promoting the new urbanization. It provides the power support for the new urbanization,and economic development has entered a new era in China. In order to better promote the new urbanization and the construction of ecological civilization,there is a need to optimize the use of land resources,provide space guarantee for new urbanization and the construction of ecological civilization; vigorously develop the financial sector to provide financial support for the new urbanization and the construction of ecological civilization; perfect information infrastructure to provide information support for the new urbanization and the construction of ecological civilization; stick to people-oriented principle and strive to build livable city of ecological civilization; establish ecological compensation mechanism to promote the coordinated development of regional new ecological town; make a blue map for cooperative promotion of new urbanization and ecological civilization construction through the establishment of a scientific and rational plan.
Does the cellulose-binding module move on the cellulose surface
Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 μM to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.