Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Contributors
    • Location
21,261 result(s) for "Luo, Yu"
Sort by:
Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
Seawater is one of the most abundant natural resources on our planet. Electrolysis of seawater is not only a promising approach to produce clean hydrogen energy, but also of great significance to seawater desalination. The implementation of seawater electrolysis requires robust and efficient electrocatalysts that can sustain seawater splitting without chloride corrosion, especially for the anode. Here we report a three-dimensional core-shell metal-nitride catalyst consisting of NiFeN nanoparticles uniformly decorated on NiMoN nanorods supported on Ni foam, which serves as an eminently active and durable oxygen evolution reaction catalyst for alkaline seawater electrolysis. Combined with an efficient hydrogen evolution reaction catalyst of NiMoN nanorods, we have achieved the industrially required current densities of 500 and 1000 mA cm −2 at record low voltages of 1.608 and 1.709 V, respectively, for overall alkaline seawater splitting at 60 °C. This discovery significantly advances the development of seawater electrolysis for large-scale hydrogen production. Seawater electrolysis is a promising approach to produce hydrogen fuel and is also of great significance to seawater desalination. Here, the authors prepare 3D core-shell metal-nitride catalysts from earth-abundant elements for high-performance alkaline seawater electrolysis.
System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System X c − ), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System X c − /GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System X c − /GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System X c − /GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer’s Disease and Parkinson’s Disease
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
Deterministic entanglement generation from driving through quantum phase transitions
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.
Neural Manifestations of Implicit Self-Esteem: An ERP Study
Behavioral research has established that humans implicitly tend to hold a positive view toward themselves. In this study, we employed the event-related potential (ERP) technique to explore neural manifestations of positive implicit self-esteem using the Go/Nogo association task (GNAT). Participants generated a response (Go) or withheld a response (Nogo) to self or others words and good or bad attributes. Behavioral data showed that participants responded faster to the self paired with good than the self paired with bad, whereas the opposite proved true for others, reflecting the positive nature of implicit self-esteem. ERP results showed an augmented N200 over the frontal areas in Nogo responses relative to Go responses. Moreover, the positive implicit self-positivity bias delayed the onset time of the N200 wave difference between Nogo and Go trials, suggesting that positive implicit self-esteem is manifested on neural activity about 270 ms after the presentation of self-relevant stimuli. These findings provide neural evidence for the positivity and automaticity of implicit self-esteem.
Evaporation of microwave-shielded polar molecules to quantum degeneracy
Ultracold polar molecules offer strong electric dipole moments and rich internal structure, which makes them ideal building blocks to explore exotic quantum matter 1 – 9 , implement quantum information schemes 10 – 12 and test the fundamental symmetries of nature 13 . Realizing their full potential requires cooling interacting molecular gases deeply into the quantum-degenerate regime. However, the intrinsically unstable collisions between molecules at short range have so far prevented direct cooling through elastic collisions to quantum degeneracy in three dimensions. Here we demonstrate evaporative cooling of a three-dimensional gas of fermionic sodium–potassium molecules to well below the Fermi temperature using microwave shielding. The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave. The microwave dressing induces strong tunable dipolar interactions between the molecules, leading to high elastic collision rates that can exceed the inelastic ones by at least a factor of 460. This large elastic-to-inelastic collision ratio allows us to cool the molecular gas to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such cold and dense samples of polar molecules open the path to the exploration of many-body phenomena with strong dipolar interactions. A general and efficient approach to evaporatively cool ultracold polar molecules through elastic collisions to create a degenerate quantum gas in three dimensions is demonstrated using microwave shielding.
Patterns of brain activity associated with nostalgia: a social-cognitive neuroscience perspective
Nostalgia arises from tender and yearnful reflection on meaningful life events or important persons from one’s past. In the last two decades, the literature has documented a variety of ways in which nostalgia benefits psychological well-being. Only a handful of studies, however, have addressed the neural basis of the emotion. In this prospective review, we postulate a neural model of nostalgia. Self-reflection, autobiographical memory, regulatory capacity and reward are core components of the emotion. Thus, nostalgia involves brain activities implicated in self-reflection processing (medial prefrontal cortex, posterior cingulate cortex and precuneus), autobiographical memory processing (hippocampus, medial prefrontal cortex, posterior cingulate cortex and precuneus), emotion regulation processing (anterior cingulate cortex and medial prefrontal cortex) and reward processing (striatum, substantia nigra, ventral tegmental area and ventromedial prefrontal cortex). Nostalgia’s potential to modulate activity in these core neural substrates has both theoretical and applied implications.
Nostalgia enhances detection of death threat: neural and behavioral evidence
An experiment examined the potency of nostalgia—a sentimental longing for one’s past—to facilitate detection of death-related stimuli, using functional magnetic resonance imaging (fMRI) and behavioral techniques (i.e., judgmental accuracy, reaction times). We hypothesized and found that, at the neural level, nostalgic (relative to control) participants evinced more intense activation in right amygdala in response to death-related (vs. neutral) words. We also hypothesized and found that, at the behavioral level, nostalgic (relative to control) participants manifested greater accuracy in judging whether two death-related (vs. neutral) words belonged in the same category. Exploratory analyses indicated that nostalgic (relative to control) participants did not show faster reaction times to death-related (vs. neutral) words. In all, nostalgia appeared to aid in death threat detection. We consider implications for the relevant literatures.