Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,772
result(s) for
"Luo, Yun"
Sort by:
Psychometric properties of the Chinese version of the modified polycystic ovary syndrome health-related quality-of-life questionnaire
2020
Background
The modified polycystic ovary syndrome health-related quality-of-life questionnaire (MPCOSQ) is a 30-item instrument measuring quality-of-life in English-speaking patients with polycystic ovary syndrome (PCOS). We aimed to: 1) cross-culturally adapt the MPCOSQ into Chinese, and 2) assess the validity and reliability of the Chinese version of the MPCOSQ (Chi-MPCOSQ).
Methods
The MPCOSQ was translated using the forward-backward method, and its validity and reliability were assessed among 283 Chinese patients with PCOS. Internal consistency reliability and test-retest reliability were assessed by Cronbach’s α and intra-correlation coefficient (ICC), respectively. Construct validity was tested through exploratory factor analysis and confirmatory factor analysis. Discriminant validity was assessed by Mann-Whitney U test to compare the scores on the Chi-MPCOSQ between 283 women with PCOS and 93 women without PCOS.
Results
Exploratory factor analysis generated a 7-factor structure of the 30-item version of the Chi-MPCOSQ, which accounted for 77% of the overall variance. The Chi-MPCOSQ had high internal consistency (Cronbach’s α = 0.88) and good test-retest reliability (ICC = 0.89). Compared to PCOS patients, women without PCOS had consistently lower scores for every dimension of the Chi-MPCOSQ, demonstrating its good discriminant validity.
Conclusion
The Chi-MPCOSQ is a valid and reliable instrument for measuring quality-of-life among Chinese women with PCOS.
Journal Article
MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential
by
Wang, Wei
,
Luo, Yun-ping
in
Animals
,
Biomarkers, Tumor - metabolism
,
Biomedical and Life Sciences
2015
MicroRNAs (miRs) are small single-stranded RNA molecules, which function as key negative regulators of post-transcriptional modulation in almost all biological processes. Abnormal expression of microRNAs has been observed in various types of cancer including breast cancer. Great efforts have been made to identify an association between microRNA expression profiles and breast cancer, and to understand the functional role and molecular mechanism of aberrant-expressed microRNAs. As research progressed, ‘oncogenic microRNAs’ and ‘tumor suppressive microRNAs’ became a focus of interest. The potential of candidate microRNAs from both intercellular (tissue) and extracellular (serum) sources for clinical diagnosis and prognosis was revealed, and treatments involving microRNA achieved some amazing curative effects in cancer disease models. In this review, advances from the most recent studies of microRNAs in one of the most common cancers, breast cancer, are highlighted, especially the functions of specifically selected microRNAs. We also assess the potential value of these microRNAs as diagnostic and prognostic markers, and discuss the possible development of microRNA-based therapies.
Journal Article
Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: A retrospective study
by
Ouyang, Chun‐lei
,
Song, Yu‐xiang
,
Lou, Jing‐sheng
in
Aged
,
Anesthesia
,
Artificial intelligence
2023
Aims To compare the performance of logistic regression and machine learning methods in predicting postoperative delirium (POD) in elderly patients. Method This was a retrospective study of perioperative medical data from patients undergoing non‐cardiac and non‐neurology surgery over 65 years old from January 2014 to August 2019. Forty‐six perioperative variables were used to predict POD. A traditional logistic regression and five machine learning models (Random Forest, GBM, AdaBoost, XGBoost, and a stacking ensemble model) were compared by the area under the receiver operating characteristic curve (AUC‐ROC), sensitivity, specificity, and precision. Results In total, 29,756 patients were enrolled, and the incidence of POD was 3.22% after variable screening. AUCs were 0.783 (0.765–0.8) for the logistic regression method, 0.78 for random forest, 0.76 for GBM, 0.74 for AdaBoost, 0.73 for XGBoost, and 0.77 for the stacking ensemble model. The respective sensitivities for the 6 aforementioned models were 74.2%, 72.2%, 76.8%, 63.6%, 71.6%, and 67.4%. The respective specificities for the 6 aforementioned models were 70.7%, 99.8%, 96.5%, 98.8%, 96.5%, and 96.1%. The respective precision values for the 6 aforementioned models were 7.8%, 52.3%, 55.6%, 57%, 54.5%, and 56.4%. Conclusions The optimal application of the logistic regression model could provide quick and convenient POD risk identification to help improve the perioperative management of surgical patients because of its better sensitivity, fewer variables, and easier interpretability than the machine learning model. Six prediction models were constructed for POD using logistic regression, RF, AdaBoost, XGBoost, GBM, and stacking ensemble learning based on retrospective analysis of a large sample dataset. The logistic regression model had the same AUC(0.78) with the RF, and performed better than the machine learning models because of its better sensitivity, fewer variables, and easier interpretability.
Journal Article
Structural variant landscapes reveal convergent signatures of evolution in sheep and goats
by
Zhu, Qiang-Hui
,
Esmailizadeh, Ali
,
Huang, Jia-Hui
in
Animal Genetics and Genomics
,
Animals
,
Annotations
2024
Background
Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution.
Results
We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g.,
BMPR1B
,
BMPR2
,
RALYL
,
COL21A1
, and
LRP1B
) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene
BMPR1B
, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats.
Conclusions
Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Journal Article
Visible-light-mediated deoxygenative transformation of 1,2-dicarbonyl compounds through energy transfer process
2024
Through the energy transfer process, mild transformations can be achieved that are often difficult to realize under thermodynamic conditions. Herein, a visible-light-driven deoxygenative coupling of 1,2-dicarbonyl compounds for C–O, C–S, and C–N bonds construction is developed via triplet state 1,2-dicarbonyls, affording a wide range of α-functionalized ketones/esters under transition-metal and external photocatalyst free conditions. The usefulness of this method is demonstrated by gram-scale synthesis, late-stage functionalization of various carboxylic acid drugs, and the synthesis of natural products and drug molecules.
Visible-light photochemistry, which includes energy transfer processes, can enable transformations that are difficult or prohibited from thermal pathways. Here, the authors develop a deoxygenative coupling of 1,2-dicarbonyl compounds with a variety of nucleophiles via energy transfer.
Journal Article
Astragaloside alleviates alcoholic fatty liver disease by suppressing oxidative stress
by
Chen, Yun‐Zhi
,
Gao, Jie
,
Jiang, Zhi‐Bin
in
Alcohol use
,
alcoholic fatty liver disease
,
Animals
2021
Alcoholic fatty liver disease (AFLD) is the most common liver disease and can progress to fatal liver cirrhosis and carcinoma, affecting millions of patients worldwide. The functions of astragaloside on the cardiovascular system have been elucidated. However, its role in AFLD is unclear. Ethanol‐treated AML‐12 cells were used as a cell model of alcoholic fatty liver. Real‐time quantitative reverse transcription‐PCR and Western blotting detected genes and proteins expressions. Reactive oxygen species (ROS), triglyceride, total cholesterol, low‐density lipoprotein, albumin, ferritin, bilirubin, superoxide dismutase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were examined using commercial kits. Lipid accumulation was assessed by Oil red O staining. MTT and flow cytometry measured cell viability and apoptosis. JC‐1 was used to analyze mitochondrial membrane potential. A rat model of AFLD was established by treating rats with ethanol. Astragaloside suppressed ethanol‐induced lipid accumulation, oxidative stress, and the production of AST and ALT in AML‐12 cells. Ethanol induced TNF‐α and reduced IL‐10 expression, which were reversed by astragaloside. Ethanol promoted Bax expression and cytochrome C release and inhibited Bcl‐2 and ATP expression. Astragaloside hampered these apoptosis effects in AML‐12 cells. Impaired mitochondrial membrane potential was recovered by astragaloside. However, all these astragaloside‐mediated beneficial effects were abolished by the ROS inducer pyocyanin. Ethanol‐induced activation of NF‐κB signaling was suppressed by astragaloside in vitro and in vivo, suggesting that astragaloside inhibited oxidative stress by suppressing the activation of NF‐κB signaling, thus improving liver function and alleviating AFLD in rats. Our study elucidates the pharmacological mechanism of astragaloside and provides potential therapeutic strategies for AFLD.
Journal Article
Ursolic Acid Improves Intestinal Damage and Bacterial Dysbiosis in Liver Fibrosis Mice
2019
Liver fibrosis is a reversible process of extracellular matrix deposition or scar formation after liver injury. Intestinal damage and bacterial dysbiosis are important concomitant intestinal changes in liver fibrosis and may in turn accelerate the progression of liver fibrosis through the gut–liver axis. RhoA, an important factor in the regulation of the cytoskeleton, plays an important role in intestinal damage. We investigated the effects of ursolic acid (UA), a traditional Chinese medicine with anti-fibrotic effects, on intestinal damage and bacterial disorder through the RhoA pathway. UA treatment reduced intestinal damage by inhibiting the inflammatory factor TNF-α and increasing the expression of tight junction proteins and antibacterial peptides to protect the intestinal barrier. Moreover, the corrective effect of UA on bacterial dysbiosis was also confirmed by sequencing of the 16S rRNA gene. Potential beneficial bacteria, such as the phylum Firmicutes and the genera Lactobacillus and Bifidobacterium , were increased in the UA group compared to the CCl4 group. In liver fibrosis mice with RhoA inhibition via injection of adeno-associated virus, the liver fibrosis, intestinal damage, and flora disturbances were improved. Moreover, UA inhibited the expression of RhoA pathway components. In conclusion, UA improves intestinal damage and bacterial dysbiosis partly via the RhoA pathway. This may be a potential mechanism by which UA exerts its anti-fibrotic effects and provides effective theoretical support for the future use of UA in clinical practice.
Journal Article
A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
2019
Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.
Journal Article
Gemcitabine and APG-1252, a novel small molecule inhibitor of BCL-2/BCL-XL, display a synergistic antitumor effect in nasopharyngeal carcinoma through the JAK-2/STAT3/MCL-1 signaling pathway
2021
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis, with an unfavorable response to palliative chemotherapy. Unfortunately, there are few effective therapeutic regimens. Therefore, we require novel treatment strategies with enhanced efficacy. The present study aimed to investigate the antitumor efficacy of APG-1252-M1, a dual inhibitor of BCL-2/BCL-XL, as a single agent and combined with gemcitabine. We applied various apoptotic assays and used subcutaneous transplanted NPC model to assess the in vitro and in vivo antitumor activity. Moreover, phospho-tyrosine kinase array was used to investigate the combined therapy’s potential synergistic mechanism. In addition, further validation was performed using immunohistochemistry and western blotting. In vitro, we observed that APG-1252-M1 had moderate antitumor activity toward NPC cells; however, it markedly improved gemcitabine’s ability to promote NPC cell apoptosis and suppress invasion, migration, and proliferation. Specifically, APG-1252 plus gemcitabine exhibited even remarkable antitumor activity in vivo. Mechanistically, the drug combination synergistically suppressed NPC by activating caspase-dependent pathways, blocking the phospho (p)-JAK-2/STAT3/MCL-1 signaling pathway, and inhibiting epithelial-mesenchymal transition. In conclusion, the results indicated that the combination of APG-1252 and gemcitabine has synergistic anticancer activities against NPC, providing a promising treatment modality for patients with NPC.
Journal Article
Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci
2022
Abstract
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Journal Article