Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
260 result(s) for "Luquet, I"
Sort by:
The complex karyotype in hematological malignancies: a comprehensive overview by the Francophone Group of Hematological Cytogenetics (GFCH)
Karyotype complexity has major prognostic value in many malignancies. There is no consensus on the definition of a complex karyotype, and the prognostic impact of karyotype complexity differs from one disease to another. Due to the importance of the complex karyotype in the prognosis and treatment of several hematological diseases, the Francophone Group of Hematological Cytogenetics (Groupe Francophone de Cytogénétique Hématologique, GFCH) has developed an up-to-date, practical document for helping cytogeneticists to assess complex karyotypes in these hematological disorders. The evaluation of karyotype complexity is challenging, and it would be useful to have a consensus method for counting the number of chromosomal abnormalities (CAs). Although it is not possible to establish a single prognostic threshold for the number of CAs in all malignancies, a specific consensus prognostic cut-off must be defined for each individual disease. In order to standardize current cytogenetic practices and apply a single denomination, we suggest defining a low complex karyotype as having 3 CAs, an intermediate complex karyotype as having 4 CAs, and a highly complex karyotype as having 5 or more CAs.
NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis
Pediatric acute myeloid leukemia (AML) is a rare disease whose prognosis is highly variable according to factors such as chromosomal abnormalities. Recurrent genomic rearrangements are detected in half of pediatric AML by karyotype. NUcleoPorin 98 ( NUP98 ) gene is rearranged with 31 different fusion partner genes. These rearrangements are frequently undetected by conventional cytogenetics, as the NUP98 gene is located at the end of the chromosome 11 short arm (11p15). By screening a series of 574 pediatric AML, we detected a NUP98 rearrangement in 22 cases (3.8%), a frequency similar to CBFB-MYH11 fusion gene (4.0%). The most frequent NUP98 fusion gene partner is NSD1 . These cases are homogeneous regarding their biological and clinical characteristics, and associated with bad prognosis only improved by bone marrow transplantation. We detailed the biological characteristics of these AML by exome sequencing which demonstrated few recurrent mutations ( FLT3 ITD, WT1 , CEBPA , NBPF14 , BCR and ODF1 ). The analysis of the clonal structure in these cases suggests that the mutation order in the NUP98 -rearranged pediatric AML begins with the NUP98 rearrangement leading to epigenetic dysregulations then followed by mutations of critical hematopoietic transcription factors and finally, activation of the FLT3 signaling pathway.
A new Leukemia Prognostic Scoring System for refractory/relapsed adult acute myelogeneous leukaemia patients: a GOELAMS study
A simplified prognostic score is presented based on the multivariate analysis of 138 refractory/relapsed acute myeloid leukaemia (AML) patients (median age 55 years, range: 19–70) receiving a combination of intensive chemotherapy+Gemtuzumab as salvage regimen. Overall, 2-year event-free survival (EFS) and overall survival (OS) were 29±4% and 36±4%, respectively. Disease status (relapse <12 months, including refractory patients), FLT3-ITD-positive status and high-risk cytogenetics were the three strongest independent adverse prognostic factors for OS and EFS in this series. We then defined three subgroups with striking different outcomes at 2 years: no adverse factor (favourable, N =36): OS 58%, EFS 45%; one adverse factor (intermediate, N =54): OS 37%, EFS 31%; two or three adverse factors (poor, N =43): OS 12%, EFS 12% ( P <10 −4 , P =0.001). This new simplified Leukemia Prognostic Scoring System was then validated on an independent cohort of 111 refractory/relapsed AML patients. This new simplified prognostic score, using three clinical and biological parameters routinely applied, allow to discriminate around two third of the patients who should benefit from a salvage intensive regimen in the setting of refractory/relapsed AML patients. The other one third of the patients should receive investigational therapy.
Early clearance of peripheral blasts measured by flow cytometry during the first week of AML induction therapy as a new independent prognostic factor: a GOELAMS study
An early appreciation of treatment efficacy could be very useful in acute myeloblastic leukemia (AML), and a prognostic value has been suggested for the morphological assessment of decrease in blasts during induction therapy. More sensitive, multiparametric flow cytometry (FCM) can detect far lower blast counts, allowing for a precise and reliable calculation of blast cell decrease rate (BDR). Such a multiparametric FCM four-colours/single-tube protocol, combining CD11b, CD45-ECD and CD16-PC5, was applied to peripheral blood samples from 130 AML patients, collected daily during induction chemotherapy. Normalized blast cell percentages were used to calculate the relevant decrease slopes. Slope thresholds (<−25, −25 to −15 and >−15), or the time required to reach 90% depletion of the peripheral blast load (<5, 5 or >5 days), was strongly associated with the achievement of complete remission ( P <0.0001). Log-rank test and Cox model showed that they also carried high statistical significance ( P <0.0001) for disease-free survival. The prognostic value of cytogenetic features, confirmed in this series, was refined by BDR, which allowed to discriminate between good- and poor-risk patients among those with intermediate or normal karyotypes. This simple FCM protocol allows for an accurate prognostic sequential approach adapted to the determination of decrease in peripheral blast cells during induction chemotherapy.
Acute myeloid leukaemia with 8p11 (MYST3) rearrangement: an integrated cytologic, cytogenetic and molecular study by the groupe francophone de cytogénétique hématologique
Thirty cases of acute myeloid leukaemia (AML) with MYST histone acetyltransferase 3 (MYST3) rearrangement were collected in a retrospective study from 14 centres in France and Belgium. The mean age at diagnosis was 59.4 years and 67% of the patients were females. Most cases (77%) were secondary to solid cancer (57%), haematological malignancy (35%) or both (8%), and appeared 25 months after the primary disease. Clinically, cutaneous localization and disseminated intravascular coagulation were present in 30 and 40% of the cases, respectively. AMLs were myelomonocytic (7%) or monocytic (93%), with erythrophagocytosis (75%) and cytoplasmic vacuoles (75%). Immunophenotype showed no particularity compared with monocytic leukaemia without MYST3 abnormality. Twenty-eight cases carried t(8;16)(p11;p13) with MYST3-CREBBP fusion, one case carried a variant t(8;22)(p11;q13) and one case carried a t(8;19)(p11;q13). Type I ( MYST3 exon 16- CREBBP exon 3) was the most frequent MYST3-CREBBP fusion transcript (65%). MYST3 rearrangement was associated with a poor prognosis, as 50% of patients deceased during the first 10 months. All those particular clinical, cytologic, cytogenetic, molecular and prognostic characteristics of AML with MYST3 rearrangement may have allowed an individualization into the World Health Organization classification.
Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases
The t(8;16)(p11;p13) is a rare translocation involved in de novo and therapy-related myelomonocytic and monocytic acute leukemia. It fuses two genes encoding histone acetyltransferases (HATs), MYST3 located at 8p11 to CREBBP located at 16p13. Variant translocations involve other HAT-encoding genes such as EP300 , MYST4 , NCOA2 or NCOA3 . MYST3-linked acute myeloid leukemias (AMLs) share specific clinical and biological features and a poor prognosis. Because of its rarity, the molecular biology of MYST3-linked AMLs remains poorly understood. We have established the genome and gene expression profiles of a multicentric series of 61 M4/M5 AMLs including 18 MYST3-linked AMLs by using array comparative genome hybridization (aCGH) ( n =52) and DNA microarrays ( n =44), respectively. We show that M4/5 AMLs have a variety of rare genomic alterations. One alteration, a gain of the MYB locus, was found recurrently and only in the MYST3-linked AMLs (7/18 vs 0/34). MYST3-AMLs have also a specific a gene expression profile, which includes overexpression of MYB, CD4 and HOXA genes. These features, reminiscent of T-cell acute lymphoid leukemia (ALL), suggest the targeting of a common T-myeloid progenitor.