Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Lutzko, Carolyn"
Sort by:
G-CSF resistance of ELANE-mutant neutropenia depends on SERF1-containing truncated–neutrophil elastase aggregates
Severe congenital neutropenia (SCN) is frequently associated with dominant point mutations in ELANE, the gene encoding neutrophil elastase (NE). Chronic administration of granulocyte colony-stimulating factor (G-CSF) is a first-line treatment of ELANE-mutant (ELANEmut) SCN. However, some ELANEmut patients, including patients with ELANE start codon mutations, do not respond to G-CSF. Here, through directed granulopoiesis of gene-edited isogenic normal and patient-derived iPSCs, we demonstrate that ELANE start codon mutations suffice to induce G-CSF-resistant granulocytic precursor cell death and refractory SCN. ELANE start codon-mutated neutrophil precursors express predominantly nuclear N-terminally truncated alternate NE. Unlike G-CSF-sensitive ELANE mutations that induce endoplasmic reticulum and unfolded protein response stress, we found that the mutation of the ELANE translation initiation codon resulted in NE aggregates and activated proapoptotic aggrephagy, as determined by downregulated BAG1 expression, decreased BAG1/BAG3 ratio, NE colocalization with BAG3, and localized expression of autophagic LC3B. We found that SERF1, an RNA-chaperone protein, known to localize in misfolded protein aggregates in neurodegenerative diseases, was highly upregulated and interacted with cytoplasmic NE of mutant neutrophil precursors. Silencing of SERF1 enhanced survival and differentiation of iPSC-derived neutrophil precursors, restoring their responsiveness to G-CSF. These observations provide a mechanistic insight into G-CSF-resistant ELANEmut SCN, revealing targets for therapeutic intervention.
Neutrophils Derived from Genetically Modified Human Induced Pluripotent Stem Cells Circulate and Phagocytose Bacteria In Vivo
Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor‐derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half‐life and the limited availability of large numbers of donor‐derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC‐derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%–70% reduced Escherichia coli phagocytosis and phorbol 12‐myristate 13‐acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist‐stimulated iPSC‐derived neutrophils. Expression of a constitutively activated AKT in iPSC‐derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC‐derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. Stem Cells Translational Medicine 2019;8:557–567 Human induced pluripotent stem cells can be engineered to generate human neutrophils expressing constitutively active AKT with significant activity to phagocytose bacteria in vitro and in vivo. Abbreviation: Diff., Differentiation.
Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
Wnt Signaling Orchestration with a Small Molecule DYRK Inhibitor Provides Long‐Term Xeno‐Free Human Pluripotent Cell Expansion
An optimal culture system for human pluripotent stem cells should be fully defined and free of animal components. To date, most xeno‐free culture systems require human feeder cells and/or highly complicated culture media that contain activators of the fibroblast growth factor (FGF) and transforming growth factor‐β (TGFβ) signaling pathways, and none provide for replacement of FGF/TGFβ ligands with chemical compounds. The Wnt/β‐catenin signaling pathway plays an important role in mouse embryonic stem cells in leukemia inhibitory factor‐independent culture; however, the role of Wnt/β‐catenin signaling in human pluripotent stem cell is still poorly understood and controversial because of the dual role of Wnts in proliferation and differentiation. Building on our previous investigations of small molecules modulating Wnt/β‐catenin signaling in mouse embryonic stem cells, we identified a compound, ID‐8, that could support Wnt‐induced human embryonic stem cell proliferation and survival without differentiation. Dual‐specificity tyrosine phosphorylation‐regulated kinase (DYRK) is the target of the small molecule ID‐8. Its role in human pluripotent cell renewal was confirmed by DYRK knockdown in human embryonic stem cells. Using Wnt and the DYRK inhibitor ID‐8, we have developed a novel and simple chemically defined xeno‐free culture system that allows for long‐term expansion of human pluripotent stem cells without FGF or TGFβ activation. These culture conditions do not include xenobiotic supplements, serum, serum replacement, or albumin. Using this culture system, we have shown that several human pluripotent cell lines maintained pluripotency (>20 passages) and a normal karyotype and still retained the ability to differentiate into derivatives of all three germ layers. This Wnt‐dependent culture system should provide a platform for complete replacement of growth factors with chemical compounds.
Pulmonary macrophage transplantation therapy
Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte–macrophage colony-stimulating factor (GM-CSF) receptor-β-deficient ( Csf2rb −/− ) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb -gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP. This study reports the correction of pulmonary alveolar proteinosis (PAP) in Csf2rb –/– mice by a single transfer of either wild-type or gene-corrected macrophages directly to the lungs — the transplanted macrophages persisted for at least 1 year; this transplantation strategy obviated the need for myeloablation and immunosuppression and should be a feasible therapy for humans with hereditary PAP. Cell transplantation in lung disease Mutations in the receptor for granulocyte–macrophage colony-stimulating factor (GM-CSF) cause pulmonary alveolar proteinosis (PAP), a hereditary disease that results in respiratory failure due to an accumulation of surfactant. No pharmacological therapy exists for this disease, and surfactant must be removed by lung lavage. PAP can be cured in mouse models by bone marrow transplantation of gene-corrected haematopoietic stem cells, but this approach has not proved feasible in humans due to infection during the necessary myeloablation/immunosuppression. Bruce Trapnell and colleagues now report correction of PAP in mice after a single transfer of gene-corrected macrophages directly to the lungs. The gene corrected macrophages persisted for at least one year. Such pulmonary transplantation of autologous gene-corrected macrophages would obviate the need for myeloablation and immunosuppression and should be more feasible for therapy of humans with PAP.
Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency
Compared to other integrating viral vectors, foamy virus (FV) vectors have distinct advantages as a gene transfer tool, including their nonpathogenicity, the ability to carry larger transgene cassettes, and increased stability of virus particles due to DNA genome formation within the virions. Proof of principle of its therapeutic utility was provided with the correction of canine leukocyte adhesion deficiency using autologous CD34 cells transduced with FV vector carrying the canine CD18 gene, demonstrating its long-term safety and efficacy. However, infectious titers of FV-human(h)CD18 were low and not suitable for manufacturing of clinical-grade product. Herein, we developed a scalable production and purification process that resulted in 60-fold higher FV-hCD18 titers from ~1.7 × 10 to 1.0 × 10 infectious units (IU)/ml. Process development improvements included use of polyethylenimine-based transfection, use of a codon-optimized , heparin affinity chromatography, tangential flow filtration, and ultracentrifugation, which reproducibly resulted in 5,000-fold concentrated and purified virus, an overall yield of 19 ± 3%, and final titers of 1-2 × 10 IU/ml. Highly concentrated vector allowed reduction of final dimethyl sulfoxide (DMSO) concentration, thereby avoiding DMSO-induced toxicity to CD34 cells while maintaining high transduction efficiencies. This process development results in clinically relevant, high titer FV which can be scaled up for clinical grade production.
Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization
Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α-expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α-positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α-green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α-GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α-GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α-positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial-mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable epithelial-mesenchymal crosstalk regulates fibroblast phenotypes during alveolar septation.