Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
55 result(s) for "Lv, Longxian"
Sort by:
Pediococcus pentosaceus, a future additive or probiotic candidate
Background Pediococcus pentosaceus , a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey
Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
Ganoderma lucidum promotes sleep through a gut microbiota-dependent and serotonin-involved pathway in mice
Ganoderma lucidum is a medicinal mushroom used in traditional Chinese medicine with putative tranquilizing effects. However, the component of G. lucidum that promotes sleep has not been clearly identified. Here, the effect and mechanism of the acidic part of the alcohol extract of G. lucidum mycelia (GLAA) on sleep were studied in mice. Administration of 25, 50 and 100 mg/kg GLAA for 28 days promoted sleep in pentobarbital-treated mice by shortening sleep latency and prolonging sleeping time. GLAA administration increased the levels of the sleep-promoting neurotransmitter 5-hydroxytryptamine and the Tph2, Iptr3 and Gng13 transcripts in the sleep-regulating serotonergic synapse pathway in the hypothalamus during this process. Moreover, GLAA administration reduced lipopolysaccharide and raised peptidoglycan levels in serum. GLAA-enriched gut bacteria and metabolites, including Bifidobacterium , Bifidobacterium animalis , indole-3-carboxylic acid and acetylphosphate were negatively correlated with sleep latency and positively correlated with sleeping time and the hypothalamus 5-hydroxytryptamine concentration. Both the GLAA sleep promotion effect and the altered faecal metabolites correlated with sleep behaviours disappeared after gut microbiota depletion with antibiotics. Our results showed that GLAA promotes sleep through a gut microbiota-dependent and serotonin-associated pathway in mice.
Nitric oxide as a source for bacterial triazole biosynthesis
The heterocycle 1,2,3-triazole is among the most versatile chemical scaffolds and has been widely used in diverse fields. However, how nature creates this nitrogen-rich ring system remains unknown. Here, we report the biosynthetic route to the triazole-bearing antimetabolite 8-azaguanine. We reveal that its triazole moiety can be assembled through an enzymatic and non-enzymatic cascade, in which nitric oxide is used as a building block. These results expand our knowledge of the physiological role of nitric oxide synthase in building natural products with a nitrogen–nitrogen bond, and should also inspire the development of synthetic biology approaches for triazole production. How nature creates 1,2,3-triazole ring is a relevant question to N-N bond biosynthesis. Here, the authors report the biosynthetic route to the triazole-bearing antimetabolite 8-azaguanine and reveal that this can be assembled through an enzymatic and non-enzymatic cascade, in which nitric oxide is used as a building block.
Administration of Bifidobacterium bifidum CGMCC 15068 modulates gut microbiota and metabolome in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated colon cancer (CAC) in mice
The gut microbiota plays an important role in colorectal cancer (CRC), and the use of probiotics might be a promising intervention method. The aim of our study was to investigate the beneficial effect of Bifidobacterium bifidum CGMCC 15068 on an azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated CRC (CAC) mouse model. CAC was induced by an intra-peritoneal injection of AOM (10 mg/kg) and three 7-day cycles of 2% DSS in drinking water with a 14-day recovery period between two consecutive DSS administrations. B. bifidum CGMCC 15068 (3 × 109 CFU/mL) was gavaged once daily during the recovery period. Then, the faecal microbial composition and metabolome were profiled using the 16S rRNA sequencing technology and gas chromatography-mass spectrometry (GC-MS), respectively. The administration of B. bifidum CGMCC 15068 attenuated tumourigenesis in the CAC mouse model. In addition, B. bifidum CGMCC 15068 pre-treatment increased the relative abundance of Akkermansia, Desulfovibrionaceae, Romboutsia, Turicibacter, Verrucomicrobiaceae, Ruminococcaceae_UCG_013, Lachnospiraceae_UCG_004, and Lactobacillus. Meanwhile, B. bifidum CGMCC 15068 altered metabolites involved in the citrate cycle (TCA cycle), glycolysis, butyrate metabolism, fatty acid biosynthesis, and galactose metabolism. Several significant correlations were identified between the differentially abundant microbes and metabolites. These findings supported the beneficial role of B. bifidum CGMCC 15068 in intestinal health by modulating dysbiosis and the gut metabolic profile. The manipulation of the gut microbial composition using probiotics might be a promising prevention strategy for CRC. Long-term and large-scale clinical trials are warranted for the potential clinical applications of this strategy in the future.
Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features
The relationship between gut microbes and COVID-19 or H1N1 infections is not fully understood. Here, we compared the gut mycobiota of 67 COVID-19 patients, 35 H1N1-infected patients and 48 healthy controls (HCs) using internal transcribed spacer (ITS) 3-ITS4 sequencing and analysed their associations with clinical features and the bacterial microbiota. Compared to HCs, the fungal burden was higher. Fungal mycobiota dysbiosis in both COVID-19 and H1N1-infected patients was mainly characterized by the depletion of fungi such as Aspergillus and Penicillium, but several fungi, including Candida glabrata, were enriched in H1N1-infected patients. The gut mycobiota profiles in COVID-19 patients with mild and severe symptoms were similar. Hospitalization had no apparent additional effects. In COVID-19 patients, Mucoromycota was positively correlated with Fusicatenibacter, Aspergillus niger was positively correlated with diarrhoea, and Penicillium citrinum was negatively correlated with C-reactive protein (CRP). In H1N1-infected patients, Aspergillus penicilloides was positively correlated with Lachnospiraceae members, Aspergillus was positively correlated with CRP, and Mucoromycota was negatively correlated with procalcitonin. Therefore, gut mycobiota dysbiosis occurs in both COVID-19 patients and H1N1-infected patients and does not improve until the patients are discharged and no longer require medical attention.Lv et al. associate the gut mycobiota with clinical features and the bacterial microbiota by comparing COVID-19 patients to those infected with H1N1 and healthy controls. They find that gut mycobiota dysbiosis occurs in both COVID-19 patients and those infected with H1N1 and that it does not improve until patients no longer require medical attention, providing insights into a better healthcare guideline.
Next-Generation Sequencing Applications for the Study of Fungal Pathogens
Next-generation sequencing (NGS) has become a widely used technology in biological research. NGS applications for clinical pathogen detection have become vital technologies. It is increasingly common to perform fast, accurate, and specific detection of clinical specimens using NGS. Pathogenic fungi with high virulence and drug resistance cause life-threatening clinical infections. NGS has had a significant biotechnological impact on detecting bacteria and viruses but is not equally applicable to fungi. There is a particularly urgent clinical need to use NGS to help identify fungi causing infections and prevent negative impacts. This review summarizes current research on NGS applications for fungi and offers a visual method of fungal detection. With the development of NGS and solutions for overcoming sequencing limitations, we suggest clinicians test specimens as soon as possible when encountering infections of unknown cause, suspected infections in vital organs, or rapidly progressive disease.
Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates d-galactosamine-induced acute liver injury in rats
Acute liver failure is a clinical emergency associated with high mortality. Accumulating evidence indicates that gut microbiota participates in the progression of liver injury, and preventive therapies based on altering gut microbiota are of great interest. Previous studies demonstrated that Lactobacillus salivarius LI01 attenuates hepatic injury, though efficiency in curtailed in the harsh environment in the gastrointestinal tract. In this study, a system to encapsulate LI01 in alginate-pectin (AP) microgels was investigated. Encapsulation significantly enhances probiotic viability for long-term storage and heat treatment, and in simulated gastrointestinal fluids (SGF or SIF) and bile salt solutions. Acute liver injury was induced in Sprague-Dawley (SD) rats by D-galactosamine (D-GaIN) injection following pretreatment with probiotics. Liver and gut barrier function, cytokines, liver and gut histology, bacterial translocation, and gut microbiota were assessed. Administration of encapsulated LI01 more effectively upregulates hepatic anti-inflammatory cytokine IL-10 and TLR-3, restores expressions of gut barrier biomarkers Claudin-1 and MUC2 and attenuates destruction of mucosal ultrastructure compared with unencapsulated probiotics pretreatment. Pretreatment with AP-LI01 microgels altered the microbial community, decreasing the abundance of pathogenic taxa Ruminiclostridium, Dorea and Ruminococcaceae_UCG-004 and enriching beneficial taxa Ruminococcaceae_UCG-014, Eubacterium, and Prevotella_1 that produce short-chain fatty acids. These results suggest that AP encapsulation of LI01 boosts viability and attenuates liver injury by reducing inflammation and restoring intestinal barrier function. These beneficial effects are probably due to alternation of gut flora. These findings provide new insight into encapsulation technology and prevention of liver failure.Key points• Alginate-pectin encapsulation enhances the viability of Lactobacillus salivarius LI01 under simulated commercial conditions and simulated gastrointestinal environment.• AP-LI01 microgel attenuates hepatic and intestinal inflammation and restores gut barrier function.• AP-LI01 microgel alters gut microbial community with increased SCFAs producers and decreased pathogenic microbes.• Beneficial improvements after administration of probiotics are highly associated with alternation of gut microbial community.
Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats
Alterations in the gut microbiome have been reported in liver cirrhosis, and probiotic interventions are considered a potential treatment strategy. This study aimed to evaluate the effects and mechanisms of Lactobacillus salivarius LI01, Pediococcus pentosaceus LI05, Lactobacillus rhamnosus GG, Clostridium butyricum MIYAIRI and Bacillus licheniformis Zhengchangsheng on CCl 4 -induced cirrhotic rats. Only administration of LI01 or LI05 prevented liver fibrosis and down-regulated the hepatic expression of profibrogenic genes. Serum endotoxins, bacterial translocations (BTs), and destruction of intestinal mucosal ultrastructure were reduced in rats treated with LI01 or LI05, indicating maintenance of the gut barrier as a mechanism; this was further confirmed by the reduction of not only hepatic inflammatory cytokines, such as TNF-α, IL-6, and IL-17A, but also hepatic TLR2, TLR4, TLR5 and TLR9. Metagenomic sequencing of 16S rRNA gene showed an increase in potential beneficial bacteria, such as Elusimicrobium and Prevotella , and a decrease in pathogenic bacteria, such as Escherichia . These alterations in gut microbiome were correlated with profibrogenic genes, gut barrier markers and inflammatory cytokines. In conclusion, L . salivarius LI01 and P . pentosaceus LI05 attenuated liver fibrosis by protecting the intestinal barrier and promoting microbiome health. These results suggest novel strategies for the prevention of liver cirrhosis.
Probiotic Lactobacillus casei Shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders
Summary Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of Lactobacillus casei strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D‐galactosamine (D‐GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma‐glutamyltranspeptidase (GGT), total bile acids, IL‐5, IL‐10, G‐CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, d‐talose and N‐acetyl‐glucosamine, reduce the depletion of d‐glucose and l‐methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI. The aim of this study is to evaluate the effect of pretreatment with the probiotic Lactobacillus casei Shirota (LcS) on acute liver injury (ALI) in rats. LcS administration ameliorates ALI‐related organ damage, alleviating inflammatory status and metabolic disorders. Furthermore, the LcS‐reshaped gut microbiota is shown to modulate liver injury‐related signalling pathways and enterohepatic cross‐talk. These findings support the use of LcS as a promising functional food additive in liver disease treatments.