Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
136 result(s) for "Lythgoe, Mark F."
Sort by:
Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain cancer, for which effective therapies are urgently needed. Chimeric antigen receptor (CAR)-based immunotherapy represents a promising therapeutic approach, but it is often impeded by highly immunosuppressive tumor microenvironments (TME). Here, in an immunocompetent, orthotopic GBM mouse model, we show that CAR-T cells targeting tumor-specific epidermal growth factor receptor variant III (EGFRvIII) alone fail to control fully established tumors but, when combined with a single, locally delivered dose of IL-12, achieve durable anti-tumor responses. IL-12 not only boosts cytotoxicity of CAR-T cells, but also reshapes the TME, driving increased infiltration of proinflammatory CD4 + T cells, decreased numbers of regulatory T cells (Treg), and activation of the myeloid compartment. Importantly, the immunotherapy-enabling benefits of IL-12 are achieved with minimal systemic effects. Our findings thus show that local delivery of IL-12 may be an effective adjuvant for CAR-T cell therapy for GBM. Glioblastoma multiform (GBM) is a common and aggressive type of primary brain cancer that currently has no effective therapy. Here, the authors show, using a mouse GBM model and EGFRvIII-targeting chimeric antigen receptor (CAR)-T cells, that Intratumoral injection of interleukin-12 helps condition the microenvironment and promote anti-tumor immunity.
Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow
Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca 2+ ]. Blockade of Ca 2+ -dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow. The brain receives 20% of cardiac output, but in accord with the current knowledge lacks a specialized sensor of its own blood flow. Here, the authors show that brain astrocytes detect drops in perfusion and trigger compensatory increases in arterial pressure and heart rate to preserve brain blood flow and oxygen delivery.
Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison
This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. ► Identify least requirements for a precise model of diffusion in white matter. ► Taxonomy of analytic models including well-used models from literature. ► New imaging protocol for model comparison. ► Restriction is essential to explain the data. ► Three-compartment models outperform two-compartments.
Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter
Photoacoustic imaging allows absorption-based high-resolution spectroscopic in vivo imaging at a depth beyond that of optical microscopy. Until recently, photoacoustic imaging has largely been restricted to visualizing the vasculature through endogenous haemoglobin contrast, with most non-vascularized tissues remaining invisible unless exogenous contrast agents are administered. Genetically encodable photoacoustic contrast is attractive as it allows selective labelling of cells, permitting studies of, for example, specific genetic expression, cell growth or more complex biological behaviours in vivo . In this study we report a novel photoacoustic imaging scanner and a tyrosinase-based reporter system that causes human cell lines to synthesize the absorbing pigment eumelanin, thus providing strong photoacoustic contrast. Detailed three-dimensional images of xenografts formed of tyrosinase-expressing cells implanted in mice are obtained in vivo to depths approaching 10 mm with a spatial resolution below 100 μm. This scheme is a powerful tool for studying cellular and genetic processes in deep mammalian tissues. Deep photoacoustic imaging of mammalian cells featuring genetically encoded contrast is reported.
In vivo imaging of glucose uptake and metabolism in tumors
There is a pressing need for techniques that can be used for the noninvasive assessment of response to therapy and staging of disease. As many pathological conditions are associated with disordered glucose metabolism, such as diabetes, stroke and cancer, Simon Walker-Samuel and his colleagues have developed a noninvasive MRI-based method for imaging glucose uptake in vivo termed glucose chemical exchange saturation transfer (glucoCEST). This potentially cost-effective approach does not require the use of radiolabeled glucose analogs or ionizing radiation and allows nonlabeled glucose to be imaged at physiological quantities. Tumors have a greater reliance on anaerobic glycolysis for energy production than normal tissues. We developed a noninvasive method for imaging glucose uptake in vivo that is based on magnetic resonance imaging and allows the uptake of unlabeled glucose to be measured through the chemical exchange of protons between hydroxyl groups and water. This method differs from existing molecular imaging methods because it permits detection of the delivery and uptake of a metabolically active compound in physiological quantities. We show that our technique, named glucose chemical exchange saturation transfer (glucoCEST), is sensitive to tumor glucose accumulation in colorectal tumor models and can distinguish tumor types with differing metabolic characteristics and pathophysiologies. The results of this study suggest that glucoCEST has potential as a useful and cost-effective method for characterizing disease and assessing response to therapy in the clinic.
Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI
The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially harmful molecules, such as amyloid beta, from the brain. As such, its components may represent new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent neurodegenerative conditions. Currently, however, the absence of any non-invasive measurement technique prohibits detailed understanding of glymphatic function in the human brain and in turn, it’s role in pathology. Here, we present the first non-invasive technique for the assessment of glymphatic inflow by using an ultra-long echo time, low b -value, multi-direction diffusion weighted MRI sequence to assess perivascular fluid movement (which represents a critical component of the glymphatic pathway) in the rat brain. This novel, quantitative and non-invasive approach may represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer’s disease. Our brain is bathed in cerebrospinal fluid, a clear liquid that ‘cushions’ the fragile organ. This liquid travels into the brain along special channels – the perivascular space – that surround certain blood vessels. As the fluid washes in and out of the brain, it takes with it potentially harmful molecules, such as the aggregates that build up to cause Alzheimer’s disease. If this brain-cleaning system becomes faulty, it could lead to neurodegenerative diseases. However, it is extremely difficult to measure the activity of this intricate and delicate system, and most studies so far have had to use invasive techniques that usually require brain surgery. Now, Harrison et al. adapt a technique, called diffusion tensor magnetic resonance imaging (MRI), to visualise how the cerebrospinal fluid moves in the perivascular space in healthy rats. The non-invasive MRI method captures how the cerebrospinal fluid is driven into the brain when the blood vessels nearby expand and contract; as the vessels pulsate with each heartbeat, there is a 300% increase in the movement of the fluid in the perivascular space. This approach could be applied to understand exactly how neurodegenerative diseases emerge when the cerebrospinal fluid stops to properly clean the brain. Ultimately, the method could be used to detect when the cleansing system starts to fail in people, which could help to treat patients before their brains accumulate too many harmful substances.
De novo cardiomyocytes from within the activated adult heart after injury
Repairs of the heart The prospect of cell-based therapy in cardiovascular regenerative medicine comes a step closer with the demonstration that a peptide can stimulate a progenitor cell population in the adult heart to act as a source of new cardiomyocytes. The stem or progenitor cells, thought to be derived from the epicardium, are activated by the small actin monomer binding protein thymosin β4, which has previously been shown to restore vascular potential to adult epicardium-derived progenitor cells after injury. The discovery of a resident source of myocardial progenitors will stimulate a search for small molecules and other factors that promote optimal progenitor activation and replacement of destroyed myocardium. A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction 1 . A therapeutic ideal—relative to cell transplantation—would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm’s tumour 1 ( Wt1 ), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells 2 with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards resident-cell-based therapy in human ischaemic heart disease.
Pharmacological MRI with Simultaneous Measurement of Cerebral Perfusion and Blood-Cerebrospinal Fluid Barrier Function using Interleaved Echo-Time Arterial Spin Labelling
Pharmacological MRI (phMRI) studies seek to capture changes in brain haemodynamics in response to a drug. This provides a methodological platform for the evaluation of novel therapeutics, and when applied to disease states, may provide diagnostic or mechanistic information pertaining to common brain disorders such as dementia. Changes to brain perfusion and blood-cerebrospinal fluid barrier (BCSFB) function can be probed, non-invasively, by arterial spin labelling (ASL) and blood-cerebrospinal fluid barrier arterial spin labelling (BCSFB-ASL) MRI respectively. Here, we introduce a method for simultaneous recording of pharmacological perturbation of brain perfusion and BCSFB function using interleaved echo-time ASL, applied to the anesthetized mouse brain. Using this approach, we capture an exclusive decrease in BCSFB-mediated delivery of arterial blood water to ventricular CSF, following anti-diuretic hormone, vasopressin, administration. The commonly used vasodilatory agent, CO2, induced similar increases (~21%) in both cortical perfusion and the BCSFB-ASL signal. Furthermore, we present evidence that caffeine administration triggers a marked decrease in BCSFB-mediated labelled water delivery (41%), with no significant changes in cortical perfusion. Finally, we demonstrate a marked decrease in the functional response of the BCSFB to, vasopressin, in the aged vs adult brain. Together these data, the first of such kind, highlight the value of this translational approach to capture simultaneous and differential pharmacological modulation of vessel tone at the blood brain barrier and BCSFB and how this relationship may be modified in the ageing brain.
CO2 signaling mediates neurovascular coupling in the cerebral cortex
Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO 2 -sensitive vasodilatory brain mechanism with surplus of exogenous CO 2 or disruption of brain CO 2 /HCO 3 − transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO 2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO 2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity. The mechanism of neurovascular coupling ensures that the brain energy supply is sufficient to meet demand. Here the authors show that in this mechanism CO2 plays an important role in neuronal activity-dependent regulation of local brain blood flow.
Vagal determinants of exercise capacity
Indirect measures of cardiac vagal activity are strongly associated with exercise capacity, yet a causal relationship has not been established. Here we show that in rats, genetic silencing of the largest population of brainstem vagal preganglionic neurons residing in the brainstem’s dorsal vagal motor nucleus dramatically impairs exercise capacity, while optogenetic recruitment of the same neuronal population enhances cardiac contractility and prolongs exercise endurance. These data provide direct experimental evidence that parasympathetic vagal drive generated by a defined CNS circuit determines the ability to exercise. Decreased activity and/or gradual loss of the identified neuronal cell group provides a neurophysiological basis for the progressive decline of exercise capacity with aging and in diverse disease states. Demonstrating a causal relationship between cardiac vagal tone and exercise capacity has been previously limited by methodological constraints. Using genetic targeting, silencing and optogenetic recruitment of vagal motor neuron activity in rodents, Machhada et al . provide direct evidence that vagal drive determines the ability to exercise.