Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Lyu, Meinan"
Sort by:
A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins
Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also use the BaR methodology to elucidate structural information from Escherichia coli K12 crude membrane and raw lysate. The findings demonstrate that it is possible to solve high-resolution structures of a number of relatively small (<100 kDa) and less abundant (<10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics.The iterative Build and Retrieve (BaR) methodology facilitates the solving of cryo-EM structures of multiple membrane (and soluble) proteins simultaneously, including small and low-abundance membrane proteins.
Pmt4 recognizes two separate acceptor sites to O-mannosylate in the S/T-rich regions of substrate proteins
Protein O-mannosyltransferases (PMTs) add mannose to serine/threonine (S/T)-rich proteins in the endoplasmic reticulum, facilitating proper folding and trafficking through the secretory pathway. These enzymes share a conserved architecture that includes a large transmembrane domain housing the catalytic pocket and a lumenal β-trefoil-folded MIR domain. Although S/T-rich regions in acceptor proteins are generally disordered, it remains unclear how PMTs selectively target these regions over other intrinsically disordered sequences. Here, using cryo-EM and X-ray crystallography, we demonstrate that the Saccharomyces cerevisiae Pmt4 dimer recognizes an S/T-rich peptide at two distinct sites. A groove above the catalytic pocket in the transmembrane domain binds the mannose-accepting S/T site, while the lumenal MIR domain engages an S/T-X-S/T motif. Notably, the substrate peptide is simultaneously bound by the catalytic pocket of one Pmt4 protomer and the MIR domain of the other, revealing an unexpected cooperative dual substrate recognition mechanism. This mechanism likely underpins the invariant dimeric architecture observed in all PMT family members. The yeast Pmt4 is a membrane embedded protein Omannosyltransferase. Du et al found that Pmt4 assembles a homodimer and detects the coincidence of the S/T acceptor site and an adjacent S/T-X-S/T motif in a model substrate, ensuring modification only to the S/T-rich regions of acceptor substrates.
Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis . However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M . smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.
Cryo-EM structures of the human band 3 transporter indicate a transport mechanism involving the coupled movement of chloride and bicarbonate ions
The band 3 transporter is a critical integral membrane protein of the red blood cell (RBC), as it is responsible for catalyzing the exchange of bicarbonate and chloride anions across the plasma membrane. To elucidate the structural mechanism of the band 3 transporter, detergent solubilized human ghost membrane reconstituted in nanodiscs was applied to a cryo-EM holey carbon grid to define its composition. With this approach, we identified and determined structural information of the human band 3 transporter. Here, we present 5 different cryo-EM structures of the transmembrane domain of dimeric band 3, either alone or bound with chloride or bicarbonate. Interestingly, we observed that human band 3 can form both symmetric and asymmetric dimers with a different combination of outward-facing (OF) and inward-facing (IF) states. These structures also allow us to obtain the first model of a human band 3 molecule at the IF conformation. Based on the structural data of these dimers, we propose a model of ion transport that is in favor of the elevator-type mechanism.
Cryo-EM Structures of a Gonococcal Multidrug Efflux Pump Illuminate a Mechanism of Drug Recognition and Resistance
Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD , encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps. Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the m ultiple t ransferrable r esistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. IMPORTANCE Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD , encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.
Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export
The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently. Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer. IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.
Simultaneous solving high-resolution structures of various enzymes from human kidney microsomes
The ability to investigate tissues and organs through an integrated systems biology approach has been thought to be unobtainable in the field of structural biology, where the techniques mainly focus on a particular biomacromolecule of interest. Here we report the use of cryo-electron microscopy (cryo-EM) to define the composition of a raw human kidney microsomal lysate. We simultaneously identify and solve cryo-EM structures of four distinct kidney enzymes whose functions have been linked to protein biosynthesis and quality control, biosynthesis of retinoic acid, gluconeogenesis and glycolysis, and the regulation and metabolism of amino acids. Interestingly, all four of these enzymes are directly linked to cellular processes that, when disrupted, can contribute to the onset and progression of diabetes. This work underscores the potential of cryo-EM to facilitate tissue and organ proteomics at the atomic level.
Elucidating the dynamics of Integrin αIIbβ3 from native platelet membranes by cryo-EM with build and retrieve method
Platelets fulfill their essential physiological roles sensing the extracellular environment through their membrane proteins. The native membrane environment provides essential regulatory cues that impact the protein structure and mechanism of action. Single-particle cryogenic electron microscopy (cryo-EM) has transformed structural biology by allowing high-resolution structures of membrane proteins to be solved from homogeneous samples. Our recent breakthroughs in data processing now make it feasible to obtain atomic-level-resolution protein structures from crude preparations in their native environments by integrating cryo-EM with the \"Build-and-Retrieve\" (BaR) data processing methodology. We applied this iterative bottom-up methodology on resting human platelet membranes for an in-depth systems biology approach to uncover how lipids, metal binding, post-translational modifications, and co-factor associations in the native environment regulate platelet function at the molecular level. Here, we report using cryo-EM followed by the BaR method to solve the unmodified integrin αIIbβ3 structure directly from resting human platelet membranes in its inactivated and intermediate states at 2.75Å and 2.67Å, respectively. Further, we also solved a novel dimer conformation of αIIbβ3 at 2.85Å formed by two intermediate-states of αIIbβ3. This may indicate a previously unknown self-regulatory mechanism of αIIbβ3 in its native environment. In conclusion, our data show the power of using cryo-EM with the BaR method to determine three distinct structures including a novel dimer directly from natural sources. This approach allows us to identify unrecognized regulation mechanisms for proteins without artifacts due to purification processes. These data have the potential to enrich our understanding of platelet signaling circuitry.
Elucidating the dynamics of Integrin αIIbbeta3 from native platelet membranes by cryo-EM with build and retrieve method
Platelets fulfill their essential physiological roles sensing the extracellular environment through their membrane proteins. The native membrane environment provides essential regulatory cues that impact the protein structure and mechanism of action. Single-particle cryogenic electron microscopy (cryo-EM) has transformed structural biology by allowing high-resolution structures of membrane proteins to be solved from homogeneous samples. Our recent breakthroughs in data processing now make it feasible to obtain atomic-level-resolution protein structures from crude preparations in their native environments by integrating cryo-EM with the \"Build-and-Retrieve\" (BaR) data processing methodology. We applied this iterative bottom-up methodology on resting human platelet membranes for an in-depth systems biology approach to uncover how lipids, metal binding, post-translational modifications, and co-factor associations in the native environment regulate platelet function at the molecular level. Here, we report using cryo-EM followed by the BaR method to solve the first unmodified integrin αIIbβ3 structure directly from resting human platelet membranes in its inactivated and intermediate states at 2.75Å and 2.67Å, respectively. Further, we also solved a novel dimer conformation of αIIbβ3 at 2.85Å formed by two intermediate-states of αIIbβ3. This may indicate a previously unknown self-regulatory mechanism of αIIbβ3 in its native environment. In conclusion, our data show the power of using cryo-EM with the BaR method to determine three distinct structures including a novel dimer directly from natural sources. This approach allows us to identify unrecognized regulation mechanisms for proteins without artifacts due to purification processes. These data have the potential to enrich our understanding of platelet signaling circuitry.Competing Interest StatementThe authors have declared no competing interest.Footnotes* The text has been updated for clarity.
The Plasmodium falciparum NCR1 membrane protein is a novel antimalarial target that exports cholesterol to maintain membrane homeostasis
Malaria is an extremely devastating parasitic infection that kills over half a million people each year. It is the leading cause of death in many developing countries, in part, due to a lack of resources and readily available therapeutics. Unfortunately, the most prevalent and deadliest causative agent of malaria, Plasmodium falciparum, has developed resistance to nearly all currently available antimalarial drugs. The P. falciparum Niemann-Pick Type C1-related (PfNCR1) transporter has been identified as a druggable target, as it is required for membrane homeostasis of the parasite. However, the structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present three structures of PfNCR1 both in the absence and presence of the functional inhibitor MMV009108 at resolutions between 2.98 Å and 3.81 Å using single-particle cryo-electron microscopy (cryo-EM). The data suggest that PfNCR1 binds cholesterol and forms a cholesterol transport tunnel to modulate the composition of the parasite plasma membrane. Cholesterol efflux assays substantiate this as they show that PfNCR1 is an exporter capable of extruding cholesterol from the membrane. Additionally, the inhibition mechanism of MMV009108 appears to be due to a direct blockage of PfNCR1, preventing this transporter from shuttling cholesterol.