Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Ménard, Delphine"
Sort by:
Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis
Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric 14N/15N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.
Remote sensing of emperor penguin abundance and breeding success
Emperor penguins ( Aptenodytes forsteri ) are under increasing environmental pressure. Monitoring colony size and population trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when light conditions levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that can predict the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are rare or unavailable. Emperor penguins colony occupancy is variable and chiefly estimated with remote sensing images at end of the breeding season. Here, the authors provide a phenological model that can extrapolate occupancy from sparse data and can predict phenological events, breeding pairs and fledging chicks.
Light affects tissue patterning of the hypocotyl in the shade-avoidance response
Plants have evolved strategies to avoid shade and optimize the capture of sunlight. While some species are tolerant to shade, plants such as Arabidopsis thaliana are shade-intolerant and induce elongation of their hypocotyl to outcompete neighboring plants. We report the identification of a developmental module acting downstream of shade perception controlling vascular patterning. We show that Arabidopsis plants react to shade by increasing the number and types of water-conducting tracheary elements in the vascular cylinder to maintain vascular density constant. Mutations in genes affecting vascular patterning impair the production of additional xylem and also show defects in the shade-induced hypocotyl elongation response. Comparative analysis of the shade-induced transcriptomes revealed differences between wild type and vascular patterning mutants and it appears that the latter mutants fail to induce sets of genes encoding biosynthetic and cell wall modifying enzymes. Our results thus set the stage for a deeper understanding of how growth and patterning are coordinated in a dynamic environment.
Spatial segregation of home ranges between neighbouring colonies in a diurnal raptor
Enhancement of information transfer has been proposed as a key driver of the evolution of coloniality. Transfer of information on location of food resources implies that individuals from the same colony share foraging areas and that each colony can be associated to a specific foraging area. In colonial breeding vertebrates, colony-specific foraging areas are often spatially segregated, mitigating intercolony intraspecific competition. By means of simultaneous GPS tracking of lesser kestrels ( Falco naumanni ) from neighbouring colonies, we showed a clear segregation of space use between individuals from different colonies. Foraging birds from different neighbouring colonies had home ranges that were significantly more segregated in space than expected by chance. This was the case both between large and between small neighbouring colonies. To our knowledge, the lesser kestrel is the only terrestrial species where evidence of spatial segregation of home ranges between conspecifics from neighbouring colonies has been demonstrated. The observed spatial segregation pattern is consistent with the occurrence of public information transfer about foraging areas and with the avoidance of overexploited areas located between neighbouring colonies. Our findings support the idea that spatial segregation of exploited areas may be widespread among colonial avian taxa, irrespective of colony size.
Inter-individual differences in foraging tactics of a colonial raptor: consistency, weather effects, and fitness correlates
Background Consistent inter-individual differences in behavioural phenotypes may entail differences in energy efficiency and expenditure, with different fitness payoffs. In colonial-breeding species, inter-individual differences in foraging behaviour may evolve to reduce resource use overlap among conspecifics exploiting shared foraging areas. Furthermore, individual differences in foraging behaviour may covary with individual characteristics, such as sex or physiological conditions. Methods We investigated individual differences in foraging tactics of a colonial raptor, the lesser kestrel ( Falco naumanni ). We tracked foraging trips of breeding individuals using miniaturized biologgers. We classified behaviours from GPS data and identified tactics at the foraging trip level by cluster analysis. We then estimated energy expenditure associated to each tactic from tri-axial accelerometer data. Results We obtained 489 foraging trips by 36 individuals. Two clusters of trips were identified, one (SF) characterized by more static foraging behaviour and the other (DF) by more dynamic foraging behaviour, with a higher proportion of flying activity and a higher energy expenditure compared to SF. Lesser kestrels showed consistent inter-individual differences in foraging tactics across weather condition gradients, favouring DF trips as solar radiation and crosswind intensity increased. DF trips were more frequent during the nestling-rearing than during the egg incubation stage. Nestlings whose tracked parent was more prone to perform DF trips experienced higher daily mass increase, irrespective of nestling feeding rates. Conclusions Our study provided evidence that breeding lesser kestrels flexibly adopted different foraging tactics according to contingent weather landscapes, with birds showing consistent inter-individual differences in the tendency to adopt a given tactic. The positive correlation between the tendency to perform more energy-demanding DF trips and nestling growth suggests that individual differences in foraging behaviour may play a role in maintaining key life-history trade-offs between reproduction and self-maintenance.
Different combinations of laccase paralogs non-redundantly control the lignin amount and composition of specific cell types and cell wall layers in Arabidopsis
Vascular plants reinforce the cell walls of the different xylem cell types with lignin, a phenolic polymer. Specific lignin chemistries are conserved between the cell wall layers of each cell type to support their functions. Yet the mechanisms controlling the tight spatial localisation of specific lignin chemistries remain unclear. Current hypotheses focus on a control by monomer biosynthesis and/or export, while their cell wall polymerisation is viewed as random and non-limiting. Here we show that cell wall polymerisation using combinations of multiple different laccases (LACs) non-redundantly and specifically control the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of A. thaliana LAC4, 5, 10, 12 and 17 by generating quadruple and quintuple loss-of-function mutants. Different combinatory loss of these LACs lead to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. We moreover showed that the LAC-mediated lignification had distinct functions in specific cell types. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with non-redundant activities immobilised in specific cell types and cell wall layers. Competing Interest Statement The authors have declared no competing interest.
Remote sensing of emperor penguin abundance and breeding success
Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when illumination levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that accurately predicts the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are very rare or unavailable. The Emperor penguin becomes the Southern Ocean’s canary in a coal mine through remote sensing its annual breeding success.
Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype
The biopolymer lignin, deposited in the cell walls of vascular cells, is essential for long-distance water conduction and structural support of plants. Independently of the species, each different vascular cell type contains a conserved lignin chemistry with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry for each cell type remained unclear. Herein, we investigate the role of specific lignin chemistries for cellular function by producing single cell analyses on vascular cell morphotypes, all enabling sap conduction but differing in morphology. We found that specific lignin chemistries accumulate in each morphotype. Moreover, lignin accumulates dynamically, increasing in quantity and changing composition, to alter the cell wall biomechanics of each morphotype during their maturation. For similar aromatic substitution, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility. Modifying this specific lignin chemistry impairs the cell wall biomechanics of each morphotype and consequently reduces their capacity to optimally conduct water in normal conditions, and to recover from drought. Altogether, lignin chemistry is differently controlled for each sap conducting cell types during their maturation to dynamically adjust their biomechanics and hydraulic properties to adapt to developmental and environmental constraints.
The food contaminant, deoxynivalenol, modulates the Thelper/Treg balance and increases inflammatory bowel diseases
The incidence of inflammatory bowel diseases (IBD) is increasing in both Western and developing countries. IBD are multifactorial disorders involving complex interactions between genetic, immune, and environmental factors such as exposure to food contaminants. Deoxynivalenol (DON) is the most prevalent mycotoxin that contaminates staple food and induces intestinal breakdown and inflammatory response. To delineate the role of DON oral exposure in IBD, we used a Dextran sulfate sodium (DSS) colitis model in rats fed with a DON-contaminated diet or a control diet for 4 weeks. Colitis was induced in the 4th week by increasing concentrations of DSS in the drinking water (0, 2, 3 or 5%). DON exacerbated body weight loss and accelerated the appearance of symptoms in animals treated with DSS. DON increased morphological damage, pro-inflammatory markers (myeloperoxidase, CXCL-1 and IL-1β) and immune cell responses. In lamina propria of the rat with colitis, DON increased adaptive and innate immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON increased IFNγ secretion and reduced Treg populations. Interestingly, De-epoxy-DON (DOM-1) a detoxified form of DON did not have any consequences on colitis. These results suggest that DON is a risk factor in the onset of IBD.
Effects of Building Height on the Sound Transmission in Cross-Laminated Timber Buildings—Vibration Reduction Index
High-rise wooden buildings are increasing in popularity, and they typically include cross-laminated timber in the structure. Taller buildings result in higher loads on the junctions lower down in the building, which are suggested in the literature to negatively affect the sound insulation. This study involved measurement of the vibration reduction index in four different CLT buildings, varying in height and junction details. A total of 12 junctions were measured at both high and low levels in the buildings. Among these, 10 junctions had resilient interlayers with different stiffnesses dependent on the designed quasi-permanent load, while 2 junctions lacked resilient interlayers. The results indicated that the vibration reduction index decreases lower down in the building mainly for the Wall–Wall path. The findings were consistent for all measured junctions above 400 Hz for the Wall–Wall path and for the majority of the measurements of the remaining frequency range, 400 Hz and below. The observed difference in the vibration reduction index could significantly impact the final result if a high-rise building has several flanking paths that affect the sound insulation between two apartments, and this needs to be considered during the design phase. Similar effects were shown for buildings both with and without resilient interlayers in the junctions.